scholarly journals A Seven-Step Block Multistep Method for the Solution of First Order Stiff Differential Equations

2020 ◽  
Vol 12 (1) ◽  
pp. 72-82
Author(s):  
Solomon Gebregiorgis ◽  
Hailu Muleta

In this paper, a seven-step block method for the solution of first order initial value problem in ordinary differential equations based on collocation of the differential equation and interpolation of the approximate solution using power series have been formed. The method is found to be consistent and zero-stable which guarantees convergence. Finally, numerical examples are presented to illustrate the accuracy and effectiveness of the method.  Keywords: Power series, Collocation, Interpolation, Block method, Stiff.

2020 ◽  
Vol 4 (3) ◽  
pp. 313-322
Author(s):  
Sunday Obomeviekome Imoni ◽  
D. I. Lanlege ◽  
E. M. Atteh ◽  
J. O. Ogbondeminu

ABSTRACT In this paper, formulation of an efficient numerical schemes for the approximation first-order initial value problems (IVPs) of ordinary differential equations (ODE) is presented. The method is a block scheme for some k-step linear multi-step methods (and) using the Hermite Polynomials a basis function. The continuous and discrete linear multi-step methods (LMM) are formulated through the technique of collocation and interpolation. Numerical examples of ODE have been examined and results obtained show that the proposed scheme can be efficient in solving initial value problems of first order ODE.


2020 ◽  
pp. 92-107
Author(s):  
Rasha H. Ibraheem

In this paper, the series solution is applied to solve third order fuzzy differential equations with a fuzzy initial value. The proposed method applies Taylor expansion in solving the system and the approximate solution of the problem which is calculated in the form of a rapid convergent series; some definitions and theorems are reviewed as a basis in solving fuzzy differential equations. An example is applied to illustrate the proposed technical accuracy. Also, a comparison between the obtained results is made, in addition to the application of the crisp solution, when the-level equals one.


Author(s):  
S. J. Kayode

The purpose of this paper is to produce an efficient zero-stable numerical method with the same order of accuracy as that of the main starting values (predictors) for direct solution of fourth-order differential equations without reducing it to a system of first-order equations. The method of collocation of the differential system arising from the approximate solution to the problem is adopted using the power series as a basis function. The method is consistent, symmetric, and of optimal order . The main predictor for the method is also consistent, symmetric, zero-stable, and of optimal order .


Author(s):  
Raymond, Dominic ◽  
Skwame, Yusuf ◽  
Adiku, Lydia

We consider developing a four-step one offgrid block hybrid method for the solution of fourth derivative Ordinary Differential Equations. Method of interpolation and collocation of power series approximate solution was used as the basis function to generate the continuous hybrid linear multistep method, which was then evaluated at non-interpolating points to give a continuous block method. The discrete block method was recovered when the continuous block was evaluated at all step points. The basic properties of the methods were investigated and said to be converge. The developed four-step method is applied to solve fourth derivative problems of ordinary differential equations from the numerical results obtained; it is observed that the developed method gives better approximation than the existing method compared with.


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Ridwanulahi I Abdulganiy ◽  
Olusheye A Akinfenwa ◽  
Osaretin E Enobabor ◽  
Blessing I Orji ◽  
Solomon A Okunuga

A family of Simpson Block Method (SBM) is proposed for the numerical integration of Delay Differential Equations (DDEs). The methods are developed through multistep collocation technique using constant step width. The convergence and accuracy of the methods are established through some standard DDEs in the reviewed literature. Keywords— Block Method, Collocation Technique, Delay Term, Delay Differential Equation, Self Starting.   


Author(s):  
I.A. Usenov ◽  
Yu.V. Kostyreva ◽  
S. Almambet kyzy

In this paper, we propose a method for studying the initial value problem for a first-order nonlinear integro-differential equation. The initial problem is reduced by substitution to a nonlinear integral equation with the Urson operator. To construct a solution to a nonlinear integral equation, the Newton-Kantorovich method is used.


Sign in / Sign up

Export Citation Format

Share Document