scholarly journals FORMULATION OF BLOCK SCHEMES WITH LINEAR MULTISTEP METHOD FOR THE APPROXIMATION OF FIRST-ORDER IVPS

2020 ◽  
Vol 4 (3) ◽  
pp. 313-322
Author(s):  
Sunday Obomeviekome Imoni ◽  
D. I. Lanlege ◽  
E. M. Atteh ◽  
J. O. Ogbondeminu

ABSTRACT In this paper, formulation of an efficient numerical schemes for the approximation first-order initial value problems (IVPs) of ordinary differential equations (ODE) is presented. The method is a block scheme for some k-step linear multi-step methods (and) using the Hermite Polynomials a basis function. The continuous and discrete linear multi-step methods (LMM) are formulated through the technique of collocation and interpolation. Numerical examples of ODE have been examined and results obtained show that the proposed scheme can be efficient in solving initial value problems of first order ODE.

2018 ◽  
Vol 14 (5) ◽  
pp. 960-969
Author(s):  
Nathaniel Mahwash Kamoh ◽  
Terhemen Aboiyar

Purpose The purpose of this paper is to develop a block method of order five for the general solution of the first-order initial value problems for Volterra integro-differential equations (VIDEs). Design/methodology/approach A collocation approximation method is adopted using the shifted Legendre polynomial as the basis function, and the developed method is applied as simultaneous integrators on the first-order VIDEs. Findings The new block method possessed the desirable feature of the Runge–Kutta method of being self-starting, hence eliminating the use of predictors. Originality/value In this paper, some information about solving VIDEs is provided. The authors have presented and illustrated the collocation approximation method using the shifted Legendre polynomial as the basis function to investigate solving an initial value problem in the class of VIDEs, which are very difficult, if not impossible, to solve analytically. With the block approach, the non-self-starting nature associated with the predictor corrector method has been eliminated. Unlike the approach in the predictor corrector method where additional equations are supplied from a different formulation, all the additional equations are from the same continuous formulation which shows the beauty of the method. However, the absolute stability region showed that the method is A-stable, and the application of this method to practical problems revealed that the method is more accurate than earlier methods.


Author(s):  
Sabo J. ◽  
Kyagya T. Y. ◽  
Ayinde A. M.

The formation of implicit second order backward difference Adam’s formulae for solving stiff systems of ODEs was study in this paper. We used interpolation and collocation in deriving backward differentiae Adam’s formulae. The basic properties of our method was analyzed, and it was found to be consistent, zero-stability and convergent, we further plotted the region of absolute stability and it was shown to be A-stable. Numerical evidences shows that the multistep method develop is very effective method for in handling linear ODEs either initial value problems or boundary value problems.


2020 ◽  
Vol 12 (1) ◽  
pp. 72-82
Author(s):  
Solomon Gebregiorgis ◽  
Hailu Muleta

In this paper, a seven-step block method for the solution of first order initial value problem in ordinary differential equations based on collocation of the differential equation and interpolation of the approximate solution using power series have been formed. The method is found to be consistent and zero-stable which guarantees convergence. Finally, numerical examples are presented to illustrate the accuracy and effectiveness of the method.  Keywords: Power series, Collocation, Interpolation, Block method, Stiff.


Author(s):  
Y. Skwame ◽  
J. Z. Donald ◽  
T. Y. Kyagya ◽  
J. Sabo

In this paper, we develop the double step hybrid linear multistep method for solving second order initial value problems via interpolation and collocation method of power series approximate solution to give a system of nonlinear equations which is solved to give a continuous hybrid linear multistep method. The continuous hybrid linear multistep method is solved for the independent solutions to give a continuous hybrid block method which is then evaluated at some selected grid points to give a discrete block method. The basic numerical properties of the hybrid block method was established and found to be zero-stable, consistent and convergent. The efficiency of the new method was conformed on some initial value problems and found to give better approximation than the existing methods.


2001 ◽  
Vol 6 (1) ◽  
pp. 9-19 ◽  
Author(s):  
A. Buikis ◽  
J. Cepitis ◽  
H. Kalis ◽  
A. Reinfelds ◽  
A. Ancitis ◽  
...  

The mathematical model of wood drying based on detailed transport phenomena considering both heat and moisture transfer have been offered in article. The adjustment of this model to the drying process of papermaking is carried out for the range of moisture content corresponding to the period of drying in which vapour movement and bound water diffusion in the web are possible. By averaging as the desired models are obtained sequence of the initial value problems for systems of two nonlinear first order ordinary differential equations. 


2020 ◽  
Vol 28 (1) ◽  
Author(s):  
O. A. Akinfenwa ◽  
R. I. Abdulganiy ◽  
B. I. Akinnukawe ◽  
S. A. Okunuga

2018 ◽  
Vol 6 (2) ◽  
pp. 53-64
Author(s):  
A. O. Adesanya ◽  
T. P. Pantuvo ◽  
D. Umar

Sign in / Sign up

Export Citation Format

Share Document