scholarly journals Prediction of Inception Length of Flow over Different Stepped Chute Geometry

2015 ◽  
Vol 34 (3) ◽  
pp. 631
Author(s):  
S Munta ◽  
JA Otun ◽  
I Abubakar
Keyword(s):  
2004 ◽  
Vol 31 (5) ◽  
pp. 880-891 ◽  
Author(s):  
Mehmet Ali Kökpinar

High-speed two-phase flows over a 30° stepped flume were experimentally investigated using macro-roughness elements. The roughness elements included combinations of steps and horizontal strips. Local values of air concentration, air bubble frequency, and mean chord lengths were measured by a fiber-optical instrumentation system in the air–water flow region. The range of unit discharge of water was varied from 0.06 to 0.20 m2/s. Three step configurations were studied: (i) without macro-roughness elements, (ii) with macro-roughness elements on each step, and (iii) with macro-roughness elements on each second step (AMR configuration). The results were compared in terms of onset flow conditions and internal air–water flow parameters such as local air concentration, mean air bubble chord length distribution, and air bubble frequency in the skimming flow regime. It was observed that the AMR configuration produced the maximum free-surface aeration among the other configurations. This alternative step geometry has potential for less cavitation damage than conventional step geometry because of the greater air entrainment.Key words: stepped chute, air-entrainment, air-water flow properties, macro-roughness elements, skimming flow.


2012 ◽  
Vol 28 ◽  
pp. 803-807 ◽  
Author(s):  
Wang Si-ying ◽  
Hou Dong-mei ◽  
Wang Cai-huan

2006 ◽  
Vol 44 (6) ◽  
pp. 857-860
Author(s):  
Masayuki Takahashi ◽  
Youichi Yasuda ◽  
Iwao Ohtsu

2002 ◽  
Vol 29 (1) ◽  
pp. 145-156 ◽  
Author(s):  
H Chanson ◽  
L Toombes

Stepped spillways have been used for about 3500 years. The last few decades have seen the development of new construction materials, design techniques, and applications, for example, embankment overtopping protection systems. Although it is commonly acknowledged that free-surface aeration is significant in stepped chutes, experimental data are scarce, often limited to very steep slopes (α ~ 50°). This paper presents an experimental study conducted in a large-size stepped chute (α = 22°, h = 0.1 m, W = 1 m). Observations demonstrate the existence of a transition flow pattern for intermediate flow rates between nappe and skimming flows. Detailed air–water flow measurements were conducted in both transition and skimming flows, immediately downstream of the inception point of free-surface aeration where uniform equilibrium flow conditions were not achieved. In skimming flows, a complete characterization is developed for the distributions of void fraction, bubble count rate, and velocity, and flow resistance data are compared with other studies. Transition flows exhibit significantly different air–water flow properties. They are highly aerated, requiring the design of comparatively high chute sidewalls.Key words: stepped spillway, air entrainment, two-phase flow properties, skimming flow, transition flow.


2018 ◽  
Vol 30 (1) ◽  
Author(s):  
Bentalha Chakib

Stepped spillway is a power full hydraulic structure for energy dissipation because ofthe large value of the surface roughness. The performance of the stepped spillway is enhancedwith the presence of air that can prevent or reduce the cavitation damage. This work aims tosimulate air entrainment and determine the characteristics of flow at stepped spillways. Withinthis work flow over stepped chute is simulated by using fluent computational fluid dynamics(CFD). The volume of fluid (VOF) model is used as a tool to simulate air-water interaction onthe free surface thereby the turbulence closure is derived in the k −ε turbulence standard model.The found numerical results agree well with experimental results.


Sign in / Sign up

Export Citation Format

Share Document