scholarly journals Dental implants with versus without peri-implant bone defects treated with guided bone regeneration

2015 ◽  
pp. e361-e368 ◽  
Author(s):  
A Aloy-Prosper ◽  
D Penarrocha-Oltra ◽  
MA Penarrocha-Diago ◽  
M Penarrocha-Diago
2020 ◽  
Author(s):  
Brent Allan ◽  
Rui Ruan ◽  
Euphemie Landao-Bassonga ◽  
Nicholas Gillman ◽  
Tao Wang ◽  
...  

Abstract Background: Treatment of cortical bone defects is a clinical challenge. Guided bone regeneration (GBR), commonly used in oral in maxillofacial dental surgery, may show promise for orthopedic application in repair of cortical defects. However, a limitation in the use of GBR for cortical bone defects is the lack of an ideal scaffold that provides sufficient mechanical support to bridge the cortical bone with minimal interference in the repair process. We have developed a new collagen membrane, CelGroTM, for use in GBR. We report the material characterisation of CelGroTM, and evaluate the performance of CelGroTM in translational preclinical and clinical studies. Methods: Scanning electron microscopy (SEM), micro computed tomography (micro-CT) and transmission electron microscopy (TEM) were used to examine the structural morphology of CelGroTM. Purity and biochemical composition of CelGroTM was evaluated by Western-blot, immunohistochemistry and confocal microscopy. Physical and chemical properties of CelGroTM were examined and compared with another commercially available collagen membrane. The pre-clinical evaluation was conducted using a cortical bone defect model in the New Zealand white rabbit. Cortical bone regeneration in defects of the femoral diaphysis were evaluated at 30 days and 60 days after intervention, by micro-CT and histology. A clinical study to evaluate the performance of CelGroTM in GBR for treatment of bone augmentation surrounding dental implants was also performed. The clinical outcomes were evaluated by semi quantitative tissue condition assessments and cone-beam computed tomography (CBCT) scan. Results: CelGroTM has a bilayer structure of different fibre alignment and is composed almost exclusively of type I collagen. CelGroTM was found to be completely acellular and a clinically significant xenoantigen, α -gal, was not detected. CelGroTM displayed less deformity and better mechanical strength as compared to Bio-Gide ® . In the preclinical study, CelGroTM demonstrated enhanced bone-modelling activity and cortical bone healing. Micro-CT evaluation showed early bony bridging over the defect area 30 days post-operatively, and nearly complete restoration of mature cortical bone at the bone defect site 60 days post- operatively. Histological analysis at day 60 after surgery further confirmed that CelGroTM enables bridging of the cortical bone defect by induction of newly-formed cortical bone. It appears that CelGroTM showed better cortical alignment and reduced porosity at the defect interface compared to Bio-Gide®. Owning the fact that selection of orthopedic patients with cortical bone defects is complex, we conducted the proof of concept clinical study in a total of 16 dental implants which were placed in 10 participants receiving GBR. The results showed that there were with no complications or adverse events observed. CBCT evidenced efficiency of the CelGroTM scaffold for GBR for the dental implants, showing significantly decreased 2 distance from the implant shoulder to first bone/implant contact (DIB) and increased horizontal thickness of facial bone wall (HT). Conclusion: The findings of our study demonstrate that CelGroTM is an ideal membrane for GBR not only in oral maxillofacial reconstructive surgery but also in orthopedic applications. Details of clinical trial registration: “Single centre, open-label, pilot study of Celgro(tm) collagen membrane for guided bone regeneration around exposed implants in patients undergoing dental implant surgery”; Registration ID: ACTRN12615000027516; Date of registration: 19/01/2015; URL: https://anzctr.org.au/ACTRN12615000027516.aspx


Author(s):  
Minh Khai Le Thieu ◽  
Håvard Jostein Haugen ◽  
Javier Sanz‐Esporrin ◽  
Mariano Sanz ◽  
Ståle Petter Lyngstadaas ◽  
...  

2015 ◽  
Vol 21 (6) ◽  
pp. 705-715 ◽  
Author(s):  
M. Fantini ◽  
F. De Crescenzio ◽  
L. Ciocca ◽  
F. Persiani

Purpose – The purpose of this paper is to describe two different approaches for manufacturing pre-formed titanium meshes to assist prosthetically guided bone regeneration of atrophic maxillary arches. Both methods are based on the use of additive manufacturing (AM) technologies and aim to limit at the minimal intervention the bone reconstructive surgery by virtual planning the surgical intervention for dental implants placement. Design/methodology/approach – Two patients with atrophic maxillary arches were scheduled for bone augmentation using pre-formed titanium mesh with particulate autogenous bone graft and alloplastic material. The complete workflow consists of four steps: three-dimensional (3D) acquisition of medical images and virtual planning, 3D modelling and design of the bone augmentation volume, manufacturing of biomodels and pre-formed meshes, clinical procedure and follow up. For what concerns the AM, fused deposition modelling (FDM) and direct metal laser sintering (DMLS) were used. Findings – For both patients, a post-operative control CT examination was scheduled to evaluate the progression of the regenerative process and verify the availability of an adequate amount of bone before the surgical intervention for dental implants placement. In both cases, the regenerated bone was sufficient to fix the implants in the planned position, improving the intervention quality and reducing the intervention time during surgery. Originality/value – A comparison between two novel methods, involving AM technologies are presented as viable and reproducible methods to assist the correct bone augmentation of atrophic patients, prior to implant placement for the final implant supported prosthetic rehabilitation.


2006 ◽  
Vol 15 (3) ◽  
pp. 82-88 ◽  
Author(s):  
Weijian Zhong ◽  
Guowu Ma ◽  
Yi Wang ◽  
Ryo Tamamura ◽  
Jing Xiao

2019 ◽  
Vol 90 (6) ◽  
pp. 595-607 ◽  
Author(s):  
Daniel J. Phillips ◽  
Dane T. Swenson ◽  
Thomas M. Johnson

2019 ◽  
Vol 8 (5) ◽  
pp. 618 ◽  
Author(s):  
Manuel Fernández-Domínguez ◽  
Victor Ortega-Asensio ◽  
Elena Fuentes Numancia ◽  
Juan Aragoneses ◽  
Horia Barbu ◽  
...  

The aim of this experimental animal study was to assess guided bone regeneration (GBR) and implant stability (ISQ) around two dental implants with different macrogeometries. Forty eight dental implants were placed within six Beagle dogs. The implants were divided into two groups (n = 24 per group): G1 group implants presented semi-conical macrogeometry, a low apical self-tapping portion, and an external hexagonal connection (whereby the cervical portion was bigger than the implant body). G2 group implants presented parallel walls macrogeometry, a strong apical self-tapping portion, and an external hexagonal connection (with the cervical portion parallel to the implant body). Buccal (mouth-related) defects of 2 mm (c2 condition) and 5 mm (c3 condition) were created. For the control condition with no defect (c1), implants were installed at crestal bone level. Eight implants in each group were installed under each condition. The implant stability quotient (ISQ) was measured immediately after implant placement, and on the day of sacrifice (3 months after the implant placement). Histological and histomorphometric procedures and analysis were performed to assess all samples, measuring crestal bone loss (CBL) and bone-to-implant contact (BIC). The data obtained were compared with statistical significance set at p < 0.05. The ISQ results showed a similar evolution between the groups at the two evaluation times, although higher values were found in the G1 group under all conditions. Within the limitations of this animal study, it may be concluded that implant macrogeometry is an important factor influencing guided bone regeneration in buccal defects. Group G1 showed better buccal bone regeneration (CBL) and BIC % at 3 months follow up, also parallel collar design can stimulate bone regeneration more than divergent collar design implants. The apical portion of the implant, with a stronger self-tapping feature, may provide better initial stability, even in the presence of a bone defect in the buccal area.


1995 ◽  
Vol 32 (4) ◽  
pp. 311-317 ◽  
Author(s):  
Carles Bosch ◽  
Birte Melsen ◽  
Karin Vargervik

Guided bone regeneration is defined as controlled stimulation of new bone formation in a bony defect, either by osteogenesis, osteoinduction, or osteoconduction, re-establishing both structural and functional characteristics. Bony defects may be found as a result of congenital anomalies, trauma, neoplasms, or infectious conditions. Such conditions are often associated with severe functional and esthetic problems. Corrective treatment is often complicated by limitations in tissue adaptations. The aim of the investigation was to compare histologically the amount of bone formed in an experimentally created parietal bone defect protected with one or two polytetrafluoroethylene membranes with a contralateral control defect. A bony defect was created bilaterally in the parietal bone lateral to the sagittal suture in 29 6-month-old male Wistar rats. The animals were divided into two groups: (1) In the double membrane group (n=9), the left experimental bone defect was protected by an outer polytetrafluoroethylene membrane under the periosteum and parietal muscles and an inner membrane between the dura mater and the parietal bone. (2) In the single membrane group (n=20), only the outer membrane was placed. The right defect was not covered with any membrane and served as control. The animals were killed after 30 days. None of the control defects demonstrated complete or partial bone regeneration. In the single membrane group, the experimental site did not regenerate in 15 animals, partially in four, and completely in one. In the double membrane group, six of the experimental defects had complete closure with bone, two had partial closure, and one no closure. The use of two membranes protecting the bone edges of the parietal defect from the overlying tissues and underlying brain enhanced bone regeneration in experimental calvarial bone defects. The biologic role of the dura mater may not be of critical importance in new bone regeneration in these calvarial bone defects.


2007 ◽  
Vol 18 (5) ◽  
pp. 649-654 ◽  
Author(s):  
Bruno César de Vasconcelos Gurgel ◽  
Patrícia Furtado Gonçalves ◽  
Suzana Peres Pimentel ◽  
Gláucia Maria Bovi Ambrosano ◽  
Francisco Humberto Nociti Júnior ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document