large bone defects
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 59)

H-INDEX

26
(FIVE YEARS 5)

2022 ◽  
Vol 11 (2) ◽  
pp. 1-11
Author(s):  
Oumaima Laghzali ◽  
Gargi Shankar Nayak ◽  
Flavien Mouillard ◽  
Patrick Masson ◽  
Geneviève Pourroy ◽  
...  

A cranio-maxillofacial region contains several bones and serves to protect and support the area, from the brain to the masticatory system. In this paper the clinical and research aspects of craniomaxillofacial biomaterials have been highlighted to serve as a guide into the wide world of their reconstructions. After a quick look into the anatomy, the review focuses on the causes of large bone defects in this region, and how they influence the designing process of the implant. Since it is a large area to unfold, only the maxillary, the mandible and the temporomandibular joints are highlighted. Understanding the biomechanics of mandible and temporomandibular joints is quite important, as it strongly influences the choice of the biomaterial. Thus, the latest techniques implemented to understand the biomechanics of the mandible are also highlighted. Via the finite element analysis, a simulation can help to identify the forces and the movements of the mandible and to predict the possible outcome of the implantation influencing the choice of the biomaterial.


2022 ◽  
Author(s):  
Peiming Liu ◽  
Tianyi Bao ◽  
Lian Sun ◽  
Zeyi Wang ◽  
Jin Sun ◽  
...  

Seeking an osteoconductive and osteoinductive scaffold is highly desirable for functional restoration of large bone defects. Here, we report an in situ mineralized poly(lactic-co-glycolic acid)/poly[2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl)ammonium hydroxide hydrogel (PLGA/PSBMA) scaffolds...


2021 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Payal Ganguly ◽  
Jehan J. El-Jawhari ◽  
James Vun ◽  
Peter V. Giannoudis ◽  
Elena A. Jones

The reconstruction of large bone defects requires the use of biocompatible osteoconductive scaffolds. These scaffolds are often loaded with the patient’s own bone marrow (BM) cells to facilitate osteoinductivity and biological potency. Scaffolds that are naturally sourced and fabricated through biomorphic transitions of rattan wood (B-HA scaffolds) offer a unique advantage of higher mechanical strength and bioactivity. In this study, we investigated the ability of a biomorphic B-HA scaffold (B-HA) to support the attachment, survival and gene expression profile of human uncultured BM-derived mesenchymal stromal cells (BMSCs, n = 6) and culture expanded MSCs (cMSCs, n = 7) in comparison to a sintered, porous HA scaffold (S-HA). B-HA scaffolds supported BMSC attachment (average 98%) and their survival up to 4 weeks in culture. Flow cytometry confirmed the phenotype of cMSCs on the scaffolds. Gene expression indicated clear segregation between cMSCs and BMSCs with MSC osteogenesis- and adipogenesis-related genes including RUNX2, PPARγ, ALP and FABP4 being higher expressed in BMSCs. These data indicated a unique transcriptional signature of BMSCs that was distinct from that of cMSCs regardless of the type of scaffold or time in culture. There was no statistical difference in the expression of osteogenic genes in BMSCs or cMSCs in B-HA compared to S-HA. VEGF release from cMSCs co-cultured with human endothelial cells (n = 4) on B-HA scaffolds suggested significantly higher supernatant concentration with endothelial cells on day 14. This indicated a potential mechanism for providing vasculature to the repair area when such scaffolds are used for treating large bone defects.


Author(s):  
Yi Huo ◽  
Yongtao Lu ◽  
Lingfei Meng ◽  
Jiongyi Wu ◽  
Tingxiang Gong ◽  
...  

In recent years, bone tissue engineering has emerged as a promising solution for large bone defects. Additionally, the emergence and development of the smart metamaterial, the advanced optimization algorithm, the advanced manufacturing technique, etc. have largely changed the way how the bone scaffold is designed, manufactured and assessed. Therefore, the aim of the present study was to give an up-to-date review on the design, manufacturing and assessment of the bone scaffold for large bone defects. The following parts are thoroughly reviewed: 1) the design of the microstructure of the bone scaffold, 2) the application of the metamaterial in the design of bone scaffold, 3) the optimization of the microstructure of the bone scaffold, 4) the advanced manufacturing of the bone scaffold, 5) the techniques for assessing the performance of bone scaffolds.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2687
Author(s):  
Venkata Suresh Venkataiah ◽  
Yoshio Yahata ◽  
Akira Kitagawa ◽  
Masahiko Inagaki ◽  
Yusuke Kakiuchi ◽  
...  

Bone tissue engineering (BTE) is a process of combining live osteoblast progenitors with a biocompatible scaffold to produce a biological substitute that can integrate into host bone tissue and recover its function. Mesenchymal stem cells (MSCs) are the most researched post-natal stem cells because they have self-renewal properties and a multi-differentiation capacity that can give rise to various cell lineages, including osteoblasts. BTE technology utilizes a combination of MSCs and biodegradable scaffold material, which provides a suitable environment for functional bone recovery and has been developed as a therapeutic approach to bone regeneration. Although prior clinical trials of BTE approaches have shown promising results, the regeneration of large bone defects is still an unmet medical need in patients that have suffered a significant loss of bone function. In this present review, we discuss the osteogenic potential of MSCs in bone tissue engineering and propose the use of immature osteoblasts, which can differentiate into osteoblasts upon transplantation, as an alternative cell source for regeneration in large bone defects.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Filippo Migliorini ◽  
Gerardo La Padula ◽  
Ernesto Torsiello ◽  
Filippo Spiezia ◽  
Francesco Oliva ◽  
...  

AbstractLarge bone defects resulting from musculoskeletal tumours, infections, or trauma are often unable to heal spontaneously. The challenge for surgeons is to avoid amputation, and provide the best functional outcomes. Allograft, vascularized fibular or iliac graft, hybrid graft, extracorporeal devitalized autograft, distraction osteogenesis, induced-membrane technique, and segmental prostheses are the most common surgical strategies to manage large bone defects. Given its optimal osteogenesis, osteoinduction, osteoconduction, and histocompatibility properties, along with the lower the risk of immunological rejection, autologous graft represents the most common used strategy for reconstruction of bone defects. However, the choice of the best surgical technique is still debated, and no consensus has been reached. The present study investigated the current reconstructive strategies for large bone defect after trauma, infections, or tumour excision, discussed advantages and disadvantages of each technique, debated available techniques and materials, and evaluated complications and new perspectives.


2021 ◽  
Author(s):  
Koji Nozaka ◽  
Naohisa Miyakoshi ◽  
Motoki Mita ◽  
Yoichi Shimada

Abstract Background Gustilo–Anderson type IIIc tibial open fracture with large bone defects in severely osteoporotic elderly patients is a rare injury that may be a challenging clinical scenario.Case presentation This study presents the case of a 68-year-old man who sustained a Gustilo–Anderson type IIIc open tibial fracture with a large bone defect. The patient had severe osteoporosis and the bone was contaminated; therefore, we determined that the bone could not be returned to the tibia. The patient underwent acute limb shortening and gradual lengthening with an Ilizarov external fixator combined with low-intensity pulsed ultrasound and teriparatide administration for limb reconstruction, which allowed immediate full weight-bearing capacity. The fixator was removed at 12 months postoperatively, and by this time, the fracture had completely healed. At the most recent 5-year follow-up after the injury, the patient reported fully weight-bearing capacity without walking aids and had full knee and ankle range of motion.Conclusions To the best of our knowledge, this is the first study to report the use of combined Ilizarov technique, low-intensity pulsed ultrasound, and teriparatide for limb reconstruction of Gustilo–Anderson type IIIc open tibial fractures with large bone defects in elderly patients with severe osteoporosis.


2021 ◽  
Author(s):  
ChiehAn Chuang ◽  
Sheng-Hsun Lee ◽  
Chih-Hsiang Chang ◽  
Chih-Chien Hu ◽  
Hsin-Nung Shih ◽  
...  

Abstract Background: Knee prosthetic joint infection (PJI) is a common but devastating complication after knee arthroplasty. The revision surgeries for knee PJI may become more challenging when it is associated with large bone defects. The application of structural bone allograft in knee revision surgeries with large bone defects is not a new technique. However, there is a lack of literature reporting its efficacy in PJI cases. This study aimed to investigate the outcome of structural fresh frozen allogenous bone grafts in treating patients in knee PJI with large bone defects. Methods: We performed a retrospective cohort analysis of knee PJI cases treated with two-stage exchange arthroplasty at our institution from 2010 to 2016. 12 patients with structural allogenous bone graft reconstructions were identified as the study group. 24 patients without structural allograft reconstructions matched with the study group by age, gender, and Charlson comorbidity index were enrolled as the control group. The functional outcome of the study group was evaluated with the Knee Society Score (KSS). Treatment success was assessed according to the Delphi-based consensus definition. The infection relapse rate and implant survivorship were compared between groups. Results: Revision knees with structural allograft presented excellent improvement in the KSS (33.1 to 75.4). There was no significant difference between infection relapse-free survival rate and prosthesis survival rate in two groups. The 8-year prosthesis survival rate was 90.9% in the study group and 91% in the control group (p = 0.913). The 8-year infection relapse-free survival rate was 80% and 83.3% in the study group and control group, respectively (p = 0.377). Conclusion: The structural fresh frozen allogenous bone graft provided an effective way for bone defect reconstruction in knee PJI with accountable survival rate. Meanwhile, using structural allografts did not increase the relapse rate of infection.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253786
Author(s):  
Maryam Tilton ◽  
Gregory S. Lewis ◽  
Michael W. Hast ◽  
Edward Fox ◽  
Guha Manogharan

Design and processing capabilities of additive manufacturing (AM) to fabricate complex geometries continues to drive the adoption of AM for biomedical applications. In this study, a validated design methodology is presented to evaluate AM as an effective fabrication technique for reconstruction of large bone defects after tumor resection in pediatric oncology patients. Implanting off-the-shelf components in pediatric patients is especially challenging because most standard components are sized and shaped for more common adult cases. While currently reported efforts on AM implants are focused on maxillofacial, hip and knee reconstructions, there have been no reported studies on reconstruction of proximal humerus tumors. A case study of a 9-year-old diagnosed with proximal humerus osteosarcoma was used to develop a patient-specific AM prosthesis for the humerus following tumor resection. Commonly used body-centered cubic (BCC) structures were incorporated at the surgical neck and distal interface in order to increase the effective surface area, promote osseointegration, and reduce the implant weight. A patient-specific prosthesis was fabricated using electron beam melting method from biocompatible Ti-6Al-4V. Both computational and biomechanical tests were performed on the prosthesis to evaluate its biomechanical behavior under varying loading conditions. Morphological analysis of the construct using micro-computed tomography was used to compare the as-designed and as-built prosthesis. It was found that the patient-specific prosthesis could withstand physiologically-relevant loading conditions with minimal permanent deformation (82 μm after 105 cycles) at the medial aspect of the porous surgical neck. These outcomes support potential translation of the patient-specific AM prostheses to reconstruct large bone defects following tumor resection.


Sign in / Sign up

Export Citation Format

Share Document