Fluxes of semivolatile organochlorine compounds in Bow Lake, a high-altitude, glacier-fed, subalpine lake in the Canadian Rocky Mountains

2001 ◽  
Vol 46 (8) ◽  
pp. 2019-2031 ◽  
Author(s):  
Jules M. Blais ◽  
David W. Schindler ◽  
Martin Sharp ◽  
Eric Braekevelt ◽  
Melissa Lafreniěre ◽  
...  
2015 ◽  
Vol 143 (2) ◽  
pp. 666-686 ◽  
Author(s):  
Vincent Vionnet ◽  
Stéphane Bélair ◽  
Claude Girard ◽  
André Plante

Abstract Numerical weather prediction (NWP) systems operational at many national centers are nowadays used at the kilometer scale. The next generation of NWP models will provide forecasts at the subkilometer scale. Large impacts are expected in mountainous terrain characterized by highly variable orography. This study investigates the ability of the Canadian NWP system to provide an accurate forecast of near-surface variables at the subkilometer scale in the Canadian Rocky Mountains in wintertime when the region is fully covered by snow. Observations collected at valley and high-altitude stations are used to evaluate forecast accuracy at three different grid spacing (2.5, 1, and 0.25 km) over a period of 15 days. Decreasing grid spacing was found to improve temperature forecasts at high-altitude stations because of better orography representation. In contrast, no improvement is obtained at valley stations due to an inability of the model to fully capture at all resolutions the intensity of valley cold pools forming during nighttime. Errors in relative humidity reveal that the model tends to overestimate relative humidity at all resolutions, without improvement with decreasing grid spacing. Wind speed forecasts show large improvements with decreasing grid spacing for high-altitude stations exposed to or sheltered from wind. However, no systematic improvement with decreasing grid spacing is found for all stations, which is similar to previous studies. In addition, the model’s sensitivity at subkilometer grid spacing is investigated by evaluating the effects of (i) accounting for additional drag generated by subgrid orographic features, (ii) considering slope angle and aspect on surface radiation, and (iii) using high-resolution initialization for the surface fields.


2007 ◽  
Vol 41 (8) ◽  
pp. 2723-2729 ◽  
Author(s):  
Marc J. Demers ◽  
Erin N. Kelly ◽  
Jules M. Blais ◽  
Frances R. Pick ◽  
Vincent L. St. Louis ◽  
...  

1993 ◽  
Vol 23 (6) ◽  
pp. 1213-1222 ◽  
Author(s):  
E.A. Johnson ◽  
D.R. Wowchuk

In this paper we present evidence for a large-scale (synoptic-scale) meteorological mechanism controlling the fire frequency in the southern Canadian Rocky Mountains. This large-scale control may explain the similarity in average fire frequencies and timing of change in average fire frequencies for the southern Canadian Rocky Mountains. Over the last 86 years the size distribution of fires (annual area burned) in the southern Canadian Rockies was distinctly bimodal, with a separation between small- and large-fire years at approximately 10–25 ha annual area burned. During the last 35 years, large-fire years had significantly lower fuel moisture conditions and many mid-tropospheric surface-blocking events (high-pressure upper level ridges) during July and August (the period of greatest fire activity). Small-fire years in this period exhibited significantly higher fuel moisture conditions and fewer persistent mid-tropospheric surface-blocking events during July and August. Mid-tropospheric surface-blocking events during large-fire years were teleconnected (spatially and temporally correlated in 50 kPa heights) to upper level troughs in the North Pacific and eastern North America. This relationship takes the form of the positive mode of the Pacific North America pattern.


1903 ◽  
Vol 21 (6) ◽  
pp. 685
Author(s):  
J. Norman Collie

2016 ◽  
Vol 25 (11) ◽  
pp. 1117 ◽  
Author(s):  
Marie-Pierre Rogeau ◽  
Mike D. Flannigan ◽  
Brad C. Hawkes ◽  
Marc-André Parisien ◽  
Rick Arthur

Like many fire-adapted ecosystems, decades of fire exclusion policy in the Rocky Mountains and Foothills natural regions of southern Alberta, Canada are raising concern over the loss of ecological integrity. Departure from historical conditions is evaluated using median fire return intervals (MdFRI) based on fire history data from the Subalpine (SUB), Montane (MT) and Upper Foothills (UF) natural subregions. Fire severity, seasonality and cause are also documented. Pre-1948 MdFRI ranged between 65 and 85 years in SUB, between 26 and 35 years in MT and was 39 years in UF. The fire exclusion era resulted in a critical departure of 197–223% in MT (MdFRI = 84–104 years). The departure in UF was 170% (MdFRI = 104 years), while regions of continuous fuels in SUB were departed by 129% (MdFRI = 149 years). The most rugged region of SUB is within its historical range of variation with a departure of 42% (MdFRI = 121 years). More mixed-severity burning took place in MT and UF. SUB and MT are in a lightning shadow pointing to a predominance of anthropogenic burning. A summer fire season prevails in SUB, but occurs from spring to fall elsewhere. These findings will assist in developing fire and forest management policies and adaptive strategies in the future.


1987 ◽  
Vol 24 (8) ◽  
pp. 1688-1704 ◽  
Author(s):  
Russell L. Hall

New ammonite faunas are described from sections along Bighorn and Scalp creeks in central-western Alberta where Lower Jurassic parts of the Fernie Formation are exposed. The first record of the upper Sinemurian Obtusum Zone from the Fernie is based on the occurrence of Asteroceras cf. stellare and Epophioceras cf. breoni in the basal pebbly coquina on Bighorn Creek. The overlying Red Deer Member has yielded Amaltheus cf. stokesi, representing the upper Pliensbachian Margaritatus Zone; in immediately superjacent strata the first North American examples of ?Amauroceras occur together with Protogrammoceras and ?Aveyroniceras. In the basal parts of the overlying Poker Chip Shale a fauna including Harpoceras cf. falciferum, Harpoceratoides, Polyplectus cf. subplanatus, Hildaites cf. serpentiniformis, and Dactylioceras cf. athleticum is correlated with the lower Toarcian Falciferum Zone.The upper parts of the Poker Chip Shale on Fording River in southeastern British Columbia contain a fauna representing some part of the upper Toarcian, but owing to poor preservation, generic identifications are only tentatively made.


Sign in / Sign up

Export Citation Format

Share Document