fire exclusion
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 27)

H-INDEX

24
(FIVE YEARS 2)

2022 ◽  
Vol 304 ◽  
pp. 114255
Author(s):  
Catherine Airey-Lauvaux ◽  
Andrew D. Pierce ◽  
Carl N. Skinner ◽  
Alan H. Taylor

2021 ◽  
Vol 4 ◽  
Author(s):  
J. Morgan Varner ◽  
Jeffrey M. Kane ◽  
Jesse K. Kreye ◽  
Timothy M. Shearman

Widespread fire exclusion and land-use activities across many southeastern United States forested ecosystems have resulted in altered species composition and structure. These changes in composition and structure have been implicated in positive fire-vegetation feedbacks termed “mesophication” where fire spread and intensity are diminished. In forests and woodlands, inherent flammability of different species is the mechanistic driver of mesophication. To date, there has been limited work on documenting the high diversity of flammability among species in the region, limiting the ability to differentiate among species to restore fuels that sustain fire regimes. Here, we coalesce disparate flammability data and add missing species across the spectrum from species that facilitate fire (so called “pyrophytes”) to those that dampen fire (so called “mesophytes”). We present data on 50 important tree species from across the southeast, all burned using identical laboratory methods. We divide our results for four dominant ecosystems: Coastal Plain uplands, oak-hickory woodlands, Appalachian forests, and bottomland forests. Across ecosystems, the most flammable species were American chestnut (Castanea dentata), a suite of pines (Pinus palustris, P. elliottii, P. serotina, and P. rigida), several oaks (Q. laevis, Q. falcata, Q. margaretta, and Q. alba), and sourwood (Oxydendrum arboreum). At the mesophytic end, the least flammable species were Tsuga canadensis, Acer rubrum, and several other hardwoods previously implicated in mesophication. Each of the four ecosystems we studied contained species that spanned the pyrophytic to mesophytic gradient. These data fill in some key holes in our understanding of southeastern fire adaptations, but also provide context for restoration decisions and fire management prioritization efforts to restore and sustain fire-prone ecosystems of the region.


Ecosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
Author(s):  
Erin N. Novak ◽  
Michelle Bertelsen ◽  
Dick Davis ◽  
Devin M. Grobert ◽  
Kelly G. Lyons ◽  
...  

2021 ◽  
Author(s):  
Jennifer N Baron ◽  
Sarah E. Gergel ◽  
Paul F. Hessburg ◽  
Lori D. Daniels

The past 100 years marks a transition between pre-colonial and modern era fire regimes, which provides crucial context for understanding future wildfire behavior. Using the greatest depth of digitized fire events in Canada, we identify distinct phases of wildfire regimes from 1919 to 2019 by evaluating changes in mapped fire perimeters (>20-ha) across the East Kootenay forest region (including the southern Rocky Mountain Trench), British Columbia (BC). We detect transitions in annual number of fires, burned area, and fire size; explore the roles of lightning- and human-caused fires in driving these transitions; and quantify departures from historical fire frequency at the regional level. We found that, relative to historical fire frequency, fire exclusion created a significant fire deficit across 89% of the flammable landscape. Fire was active from 1919 to 1940 with frequent and large fire events, but the regime was already altered by a century of colonization. Fire activity decreased after 1940, coinciding with effective fire suppression influenced by a mild climatic period. After 2003, the combined effects of fire exclusion and accelerated climate change fueled a shift in fire regimes of various forest types, with increases in area burned and mean fire size driven by lightning.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wesley Brookes ◽  
Lori D. Daniels ◽  
Kelsey Copes-Gerbitz ◽  
Jennifer N. Baron ◽  
Allan L. Carroll

In the 2017 and 2018, 2.55 million hectares burned across British Columbia, Canada, including unanticipated large and high-severity fires in many dry forests. To transform forest and fire management to achieve resilience to future megafires requires improved understanding historical fire frequency, severity, and spatial patterns. Our dendroecological reconstructions of 35 plots in a 161-hectare study area in a dry Douglas-fir forest revealed historical fires that burned at a wide range of frequencies and severities at both the plot- and study-area scales. The 23 fires between 1619 and 1943 burned at intervals of 10–30 years, primarily at low- to moderate-severity that scarred trees but generated few cohorts. In contrast, current fire-free intervals of 70–180 years exceed historical maximum intervals. Of the six widespread fires from 1790 to 1905, the 1863 fire affected 86% of plots and was moderate in severity with patches of higher severity that generated cohorts at fine scales only. These results indicate the severity of fires varied at fine spatial scales, and offer little support for the common assertion that periodic, high-severity, stand-initiating events were a component of the mixed-severity fire regime in these forest types. Many studies consider fires in the late 1800s relatively severe because they generated new cohorts of trees, and thus, emphasize the importance of high-severity fires in a mixed-severity fire regime. In our study area, the most widespread and severe fire was not a stand-initiating fire. Rather, the post-1863 cohorts persisted due disruption of the fire regime in the twentieth century when land-use shifted from Indigenous fire stewardship and early European settler fires to fire exclusion and suppression. In absence of low- to moderate-severity fires, contemporary forests are dense with closed canopies that are vulnerable to high-severity fire. Future management should reduce forest densities and to restore stand- and landscape-level heterogeneity and increase forest resilience. The timing and size of repeat treatments such as thinning of subcanopy trees and prescribed burning, including Indigenous fire stewardship, can be guided by our refined understanding of the mixed-severity fire regime that was historically dominated by low- to moderate-severity fires in this dry forest ecosystem.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247159
Author(s):  
Jennifer M. Fill ◽  
Cesar Zamora ◽  
Carolina Baruzzi ◽  
Javier Salazar-Castro ◽  
Raelene M. Crandall

Restoring fire regimes is a major goal of biodiversity conservation efforts in fire-prone ecosystems from which fire has been excluded. In the southeastern U.S.A., nearly a century of fire exclusion in pine savannas has led to significant biodiversity declines in one of the most species-rich ecosystems of North America. In these savannas, frequent fires that support biodiversity are driven by vegetation-fire feedbacks. Understory grasses are key components of these feedbacks, fueling the spread of fires that keep tree density low and maintain a high-light environment. When fire is reintroduced to long-unburned sites, however, remnant populations of bunchgrasses might experience high mortality from fuel accumulation during periods of fire exclusion. Our objective was to quantify fire effects on wiregrass (Aristida beyrichiana), a key component of vegetation-fire feedbacks, following 16 years without fire in a dry pine savanna typically considered to burn every 1–3 years. We examined how wiregrass size and fuel (duff depth and presence of pinecones) affected post-fire survival, inflorescence and seed production, and seed germination. Wiregrass exhibited high survival regardless of size or fuels. Probability of flowering and inflorescence number per plant were unaffected by fuel treatments but increased significantly with plant size (p = 0.016). Germination of filled seeds was consistent (29–43%) regardless of fuels, although plants in low duff produced the greatest proportion of filled seeds. The ability of bunchgrasses to persist and reproduce following fire exclusion could jumpstart efforts to reinstate frequent-fire regimes and facilitate biodiversity restoration where remnant bunchgrass populations remain.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0232995
Author(s):  
Cerena J. Brewen ◽  
John-Pascal Berrill ◽  
Martin W. Ritchie ◽  
Kevin Boston ◽  
Christa M. Dagley ◽  
...  

Quaking aspen (Populus tremuloides) is a valued, minor component on northeastern California landscapes. It provides a wide range of ecosystem services and has been in decline throughout the region for the last century. This decline may be explained partially by the lack of fire on the landscape due to heavier fire suppression, as aspen benefit from fire that eliminates conifer competition and stimulates reproduction through root suckering. However, there is little known about how aspen stand area changes in response to overlapping fire. Our study area in northeastern California on the Lassen, Modoc and Plumas National Forests has experienced recent large mixed-severity wildfires where aspen was present, providing an opportunity to study the re-introduction of fire. We observed two time periods; a 52-year absence of fire from 1941 to 1993 preceding a 24-year period of wildfire activity from 1993 to 2017. We utilized aerial photos and satellite imagery to delineate aspen stands and assess conifer cover percent. We chose aspen stands in areas where wildfires overlapped (twice-burned), where only a single wildfire burned, and areas that did not burn within the recent 24-year period. We observed these same stands within the first period of fire exclusion for comparison (i.e., 1941–1993). In the absence of fire, all aspen stand areas declined and all stands experienced increases in conifer composition. After wildfire, stands that burned experienced a release from conifer competition and increased in stand area. Stands that burned twice or at high severity experienced a larger removal of conifer competition than stands that burned once at low severity, promoting expansion of aspen stand area. Stands with less edge:area ratio also expanded in area more with fire present. Across both time periods, stand movement, where aspen stand footprints were mostly in new areas compared to footprints of previous years, was highest in smaller stands. In the fire exclusion period, smaller stands exhibited greater loss of area and changes in location (movement) than in the return of fire period, highlighting their vulnerability to loss via succession to conifers in the absence of disturbances that provide adequate growing space for aspen over time.


Author(s):  
Erin J. Hanan ◽  
Jianning Ren ◽  
Christina L. Tague ◽  
Crystal A. Kolden ◽  
John T. Abatzoglou ◽  
...  

2020 ◽  
Vol 475 ◽  
pp. 118406 ◽  
Author(s):  
Monica T. Rother ◽  
Jean M. Huffman ◽  
Christopher H. Guiterman ◽  
Kevin M. Robertson ◽  
Neil Jones

Fire Ecology ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Michael C. Stambaugh ◽  
Joseph M. Marschall ◽  
Erin R. Abadir

Abstract Background Vegetation of the Cumberland Plateau (USA) has undergone dramatic transitions since the last glaciation and particularly since the onset of widespread logging and twentieth century fire exclusion. Shortleaf pine (Pinus echinata Mill.), one of the most fire-dependent conifers in the US, occurs throughout the Cumberland Plateau, but its abundance has declined dramatically since Euro-American settlement and continues to decline. To better understand the historical ecology of fire within the natural range of shortleaf pine, we reconstructed fire regimes at three new sites throughout the central and southern Cumberland Plateau region based on fire scars on shortleaf pine trees. Results Fire event chronologies extended back to the seventeenth century and revealed historical fire regimes that were frequent and dominated by dormant-season and low-severity events. Fires occurred on average every 4.4 to 5.3 years at the study sites before widespread Euro-American settlement, and were more frequent (2.3 to 3.8 years) following settlement. Cumberland Plateau fires may be linked to adjacent ecoregions such as the Eastern Highland Rim to the west. Among all sites, we found that long-term trends in fire activity were similar and fit into a regional waveform pattern of fire activity likely driven by humans (i.e., Native American depopulation, European settlement, and twentieth century fire exclusion). Conclusions The decline in shortleaf pine and other fire-dependent ecosystems across the Cumberland Plateau is due to multiple interacting factors and, based on these data, frequent fire should be considered a historically important ecological driver of these systems.


Sign in / Sign up

Export Citation Format

Share Document