scholarly journals Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi

2009 ◽  
Vol 54 (6) ◽  
pp. 1855-1862 ◽  
Author(s):  
Kunshan Gao ◽  
Zuoxi Ruan ◽  
Virginia E. Villafañe ◽  
Jean-Pierre Gattuso ◽  
E. Walter Helbling
2017 ◽  
Author(s):  
Shanying Tong ◽  
David A. Hutchins ◽  
Kunshan Gao

Abstract. Marine phytoplankton such as bloom-forming, calcite-producing coccolithophores, are naturally exposed to solar UV radiation (UVR, 280–400 nm) in the ocean's upper mixed layers. Nevertheless, effects of increasing CO2-induced ocean acidification and warming have rarely been investigated in the presence of UVR. We examined calcification and photosynthetic carbon fixation performance in the most cosmopolitan coccolithophorid, Emiliania huxleyi, grown under high (1000 μatm, HC; pHT: 7.70) and low (400 μatm, LC; pHT: 8.02) CO2 levels, at 15 °C (LT), 20 °C (MT) and 24 °C (HT) with or without UVR. The HC treatment didn't affect photosynthetic carbon fixation at 15 °C, but significantly enhanced it with increasing temperature. Exposure to UVR inhibited photosynthesis, with higher inhibition by UVA (320–395 nm) than UVB (295–320 nm), except in the HC and 24 °C-grown cells, in which UVB caused more inhibition than UVA. Reduced thickness of the coccolith layer in the HC-grown cells appeared to be responsible for the UV-induced inhibition, and an increased repair rate of UVA-derived damage in the HCHT-grown cells could be responsible for lowered UVA-induced inhibition. While calcification was reduced with the elevated CO2 concentration, exposure to UVB or UVA affected it differentially, with the former inhibiting and the latter enhancing it. UVA-induced stimulation of calcification was higher in the HC-grown cells at 15 and 20 °C, whereas at 24 °C, observed enhancement was not significant. The calcification to photosynthesis ratio (Cal / Pho ratio) was lower in the HC treatment, and increasing temperature also lowered the value. However, at 20 and 24 °C, exposures to UVR significantly increased the Cal / Pho ratio, especially in HC-grown cells, by up to 100 %. This implies that UVR can counteract the negative effects of the greenhouse treatment on the Cal / Pho ratio, and so may be a key stressor when considering the impacts of future greenhouse conditions on E. huxleyi.


2017 ◽  
Author(s):  
Peter von Dassow ◽  
Francisco Díaz-Rosas ◽  
El Mahdi Bendif ◽  
Juan-Diego Gaitán-Espitia ◽  
Daniella Mella-Flores ◽  
...  

2017 ◽  
Vol 4 (6) ◽  
pp. 788-808 ◽  
Author(s):  
Guillermo Samperio-Ramos ◽  
◽  
J. Magdalena Santana-Casiano ◽  
Melchor González-Dávila ◽  
Sonia Ferreira ◽  
...  

2022 ◽  
Vol 294 ◽  
pp. 118643
Author(s):  
Juan Yu ◽  
Ji-Yuan Tian ◽  
Guang Gao ◽  
Rui Xu ◽  
Jing-Guang Lai ◽  
...  

2016 ◽  
Vol 13 (16) ◽  
pp. 4637-4643 ◽  
Author(s):  
Juntian Xu ◽  
Lennart T. Bach ◽  
Kai G. Schulz ◽  
Wenyan Zhao ◽  
Kunshan Gao ◽  
...  

Abstract. Coccolithophores are a group of phytoplankton species which cover themselves with small scales (coccoliths) made of calcium carbonate (CaCO3). The reason why coccolithophores form these calcite platelets has been a matter of debate for decades but has remained elusive so far. One hypothesis is that they play a role in light or UV protection, especially in surface dwelling species like Emiliania huxleyi, which can tolerate exceptionally high levels of solar radiation. In this study, we tested this hypothesis by culturing a calcified and a naked strain under different light conditions with and without UV radiation. The coccoliths of E. huxleyi reduced the transmission of visible radiation (400–700 nm) by 7.5 %, that of UV-A (315–400 nm) by 14.1 % and that of UV-B (280–315 nm) by 18.4 %. Growth rates of the calcified strain (PML B92/11) were about 2 times higher than those of the naked strain (CCMP 2090) under indoor constant light levels in the absence of UV radiation. When exposed to outdoor conditions (fluctuating sunlight with UV radiation), growth rates of calcified cells were almost 3.5 times higher compared to naked cells. Furthermore, the relative electron transport rate was 114 % higher and non-photochemical quenching (NPQ) was 281 % higher in the calcified compared to the naked strain, implying higher energy transfer associated with higher NPQ in the presence of calcification. When exposed to natural solar radiation including UV radiation, the maximal quantum yield of photosystem II was only slightly reduced in the calcified strain but strongly reduced in the naked strain. Our results reveal an important role of coccoliths in mitigating light and UV stress in E. huxleyi.


2014 ◽  
Vol 11 (10) ◽  
pp. 2857-2869 ◽  
Author(s):  
K. J. S. Meier ◽  
L. Beaufort ◽  
S. Heussner ◽  
P. Ziveri

Abstract. Ocean acidification is a result of the uptake of anthropogenic CO2 from the atmosphere into the ocean and has been identified as a major environmental and economic threat. The release of several thousands of petagrams of carbon over a few hundred years will have an overwhelming effect on surface ocean carbon reservoirs. The recorded and anticipated changes in seawater carbonate chemistry will presumably affect global oceanic carbonate production. Coccolithophores as the primary calcifying phytoplankton group, and especially Emiliania huxleyi as the most abundant species have shown a reduction of calcification at increased CO2 concentrations for the majority of strains tested in culture experiments. A reduction of calcification is associated with a decrease in coccolith weight. However, the effect in monoclonal cultures is relatively small compared to the strong variability displayed in natural E. huxleyi communities, as these are a mix of genetically and sometimes morphologically distinct types. Average coccolith weight is likely influenced by the variability in seawater carbonate chemistry in different parts of the world's oceans and on glacial/interglacial time scales due to both physiological effects and morphotype selectivity. An effect of the ongoing ocean acidification on E. huxleyi calcification has so far not been documented in situ. Here, we analyze E. huxleyi coccolith weight from the NW Mediterranean Sea in a 12-year sediment trap series, and surface sediment and sediment core samples using an automated recognition and analyzing software. Our findings clearly show (1) a continuous decrease in the average coccolith weight of E. huxleyi from 1993 to 2005, reaching levels below pre-industrial (Holocene) and industrial (20th century) values recorded in the sedimentary record and (2) seasonal variability in coccolith weight that is linked to the coccolithophore productivity. The observed long-term decrease in coccolith weight is most likely a result of the changes in the surface ocean carbonate system. Our results provide the first indications of an in situ impact of ocean acidification on coccolithophore weight in a natural E. huxleyi population, even in the highly alkaline Mediterranean Sea.


2015 ◽  
Vol 12 (8) ◽  
pp. 2383-2393 ◽  
Author(s):  
W. Li ◽  
K. Gao ◽  
J. Beardall

Abstract. It has been proposed that ocean acidification (OA) will interact with other environmental factors to influence the overall impact of global change on biological systems. Accordingly we investigated the influence of nitrogen limitation and OA on the physiology of diatoms by growing the diatom Phaeodactylum tricornutum Bohlin under elevated (1000 μatm; high CO2 – HC) or ambient (390 μatm; low CO2 – LC) levels of CO2 with replete (110 μmol L−1; high nitrate – HN) or reduced (10 μmol L−1; low nitrate – LN) levels of NO3- and subjecting the cells to solar radiation with or without UV irradiance to determine their susceptibility to UV radiation (UVR, 280–400 nm). Our results indicate that OA and UVB induced significantly higher inhibition of both the photosynthetic rate and quantum yield under LN than under HN conditions. UVA or/and UVB increased the cells' non-photochemical quenching (NPQ) regardless of the CO2 levels. Under LN and OA conditions, activity of superoxide dismutase and catalase activities were enhanced, along with the highest sensitivity to UVB and the lowest ratio of repair to damage of PSII. HC-grown cells showed a faster recovery rate of yield under HN but not under LN conditions. We conclude therefore that nutrient limitation makes cells more prone to the deleterious effects of UV radiation and that HC conditions (ocean acidification) exacerbate this effect. The finding that nitrate limitation and ocean acidification interact with UV-B to reduce photosynthetic performance of the diatom P. tricornutum implies that ocean primary production and the marine biological C pump will be affected by OA under multiple stressors.


Sign in / Sign up

Export Citation Format

Share Document