photosynthetic carbon fixation
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 16)

H-INDEX

21
(FIVE YEARS 4)

Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 629
Author(s):  
Yuanyuan Li ◽  
Zhengli Zhou ◽  
Yijun Li ◽  
Yanqun Wang ◽  
Mengxue Xu ◽  
...  

Impacts of ocean acidification (OA) on noncalcifying organisms and the possibly responsible mechanism have aroused great research interests with the intensification of global warming. The present study focused on a noxious, noncalcifying, bloom-forming dinoflagellate, Karenia mikimotoi (K. mikimotoi), and its variation of growth patterns exposed to different periods of seawater acidification with stressing gradients was discussed. The dinoflagellates under short-time acidifying stress (2d) with different levels of CO2 presented significant growth inhibition (p < 0.05). The cell cycle was obviously inhibited at S phase, and the photosynthetic carbon fixation was also greatly suppressed (p < 0.05). Apoptosis was observed and the apoptotic rate increased with the increment of pCO2. Similar tendencies were observed in the key components of mitochondrial apoptotic pathway (the mitochondrial membrane potential (MMP), Caspase-3 and -9, and Bax/Bcl-2 ratio). However, under prolonged stressing time (8 d and 15 d), the growth of dinoflagellates was recovered or even stimulated, the photosynthetic carbon fixation was significantly increased (p < 0.05), the cell cycle of division presented little difference with those in the control, and no apoptosis was observed (p > 0.05). Besides, acidification adjusted by HCl addition and CO2 enrichment resulted in different growth performances, while the latter had a more negative impact. The results of present study indicated that (1) the short-time exposure to acidified seawater led to reduced growth performance via inducing apoptosis, blocking of cell cycle, and the alteration in photosynthetic carbon fixation. (2) K. mikimotoi had undergone adaptive changes under long-term exposure to CO2 induced seawater acidification. This further demonstrated that K. mikimotoi has strong adaptability in the face of seawater acidification, and this may be one of the reasons for the frequent outbreak of red tide. (3) Ions that dissociated by the dissolved CO2, instead of H+ itself, were more important for the impacts induced by the acidification. This work thus provides a new perspective and a possible explanation for the dominance of K. mikimotoi during the occurrence of HABs.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 908
Author(s):  
Xiaoxiao Shi ◽  
Arnold Bloom

Photorespiration, or C2 photosynthesis, is generally considered a futile cycle that potentially decreases photosynthetic carbon fixation by more than 25%. Nonetheless, many essential processes, such as nitrogen assimilation, C1 metabolism, and sulfur assimilation, depend on photorespiration. Most studies of photosynthetic and photorespiratory reactions are conducted with magnesium as the sole metal cofactor despite many of the enzymes involved in these reactions readily associating with manganese. Indeed, when manganese is present, the energy efficiency of these reactions may improve. This review summarizes some commonly used methods to quantify photorespiration, outlines the influence of metal cofactors on photorespiratory enzymes, and discusses why photorespiration may not be as wasteful as previously believed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guang Gao ◽  
Wei Liu ◽  
Xin Zhao ◽  
Kunshan Gao

The diatom Skeletonema costatum is cosmopolitan and forms algal blooms in coastal waters, being exposed to varying levels of solar UV radiation (UVR) and reduced levels of carbon dioxide (CO2). While reduced CO2 availability is known to enhance CO2 concentrating mechanisms (CCMs) in this diatom and others, little is known on the effects of UV on microalgal CCMs, especially when CO2 levels fluctuate in coastal waters. Here, we show that S. costatum upregulated its CCMs in response to UVR (295–395 nm), especially to UVA (320–395 nm) in the presence and absence of photosynthetically active radiation (PAR). The intensity rise of UVA and/or UVR alone resulted in an increase of the activity of extracellular carbonic anhydrase (CAe); and the addition of UVA enhanced the activity of CCMs-related CAe by 23–27% when PAR levels were low. Such UV-stimulated CCMs activity was only significant at the reduced CO2 level (3.4 μmol L−1). In addition, UVA alone drove active HCO3− uptake although it was not as obvious as CAe activity, another evidence for its role in enhancing CCMs activity. In parallel, the addition of UVA enhanced photosynthetic carbon fixation only at the lower CO2 level compared to PAR alone. In the absence of PAR, carbon fixation increased linearly with increased intensities of UVA or UVR regardless of the CO2 levels. These findings imply that during S. costatum blooming period when CO2 and PAR availability becomes lower, solar UVR (mainly UVA) helps to upregulate its CCMs and thus carbon fixation, enabling its success of frequent algal blooms.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Caizhe Xu ◽  
Xiong Pi ◽  
Yawen Huang ◽  
Guangye Han ◽  
Xiaobo Chen ◽  
...  

Abstract Diatom is an important group of marine algae and contributes to around 20% of the global photosynthetic carbon fixation. Photosystem I (PSI) of diatoms is associated with a large number of fucoxanthin-chlorophyll a/c proteins (FCPIs). We report the structure of PSI-FCPI from a diatom Chaetoceros gracilis at 2.38 Å resolution by single-particle cryo-electron microscopy. PSI-FCPI is a monomeric supercomplex consisting of 12 core and 24 antenna subunits (FCPIs), and 326 chlorophylls a, 34 chlorophylls c, 102 fucoxanthins, 35 diadinoxanthins, 18 β-carotenes and some electron transfer cofactors. Two subunits designated PsaR and PsaS were found in the core, whereas several subunits were lost. The large number of pigments constitute a unique and huge network ensuring efficient energy harvesting, transfer and dissipation. These results provide a firm structural basis for unraveling the mechanisms of light-energy harvesting, transfer and quenching in the diatom PSI-FCPI, and also important clues to evolutionary changes of PSI-LHCI.


2020 ◽  
Vol 71 (1) ◽  
pp. 183-215 ◽  
Author(s):  
Urte Schlüter ◽  
Andreas P.M. Weber

C4 photosynthesis evolved multiple times independently from ancestral C3 photosynthesis in a broad range of flowering land plant families and in both monocots and dicots. The evolution of C4 photosynthesis entails the recruitment of enzyme activities that are not involved in photosynthetic carbon fixation in C3 plants to photosynthesis. This requires a different regulation of gene expression as well as a different regulation of enzyme activities in comparison to the C3 context. Further, C4 photosynthesis relies on a distinct leaf anatomy that differs from that of C3, requiring a differential regulation of leaf development in C4. We summarize recent progress in the understanding of C4-specific features in evolution and metabolic regulation in the context of C4 photosynthesis.


Elements ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Bénédicte Ménez

Geologically produced (abiotic) molecular hydrogen and methane could be widely utilized by microbial communities in surface and subsurface environments. These microbial communities can, therefore, have a potentially significant impact on the net emissions of H2 and CH4 to Earth’s ocean and atmosphere. Abiotic H2 and CH4 could enable microbial communities to exist in rock-hosted environments and hydrothermal systems with little or no input from photosynthetic carbon fixation, making these communities potential analogs for the earliest metabolisms on Earth (or other planetary bodies). The possible dependence of rock-hosted ecosystems on H2 and CH4 should factor into current and future plans for engineering the subsurface for storage of these compounds as energy fuels.


Sign in / Sign up

Export Citation Format

Share Document