Enhanced calcification ameliorates the negative effects of UV radiation on photosynthesis in the calcifying phytoplankter Emiliania huxleyi

2010 ◽  
Vol 55 (7) ◽  
pp. 588-593 ◽  
Author(s):  
WanChun Guan ◽  
KunShan Gao
2017 ◽  
Author(s):  
Shanying Tong ◽  
David A. Hutchins ◽  
Kunshan Gao

Abstract. Marine phytoplankton such as bloom-forming, calcite-producing coccolithophores, are naturally exposed to solar UV radiation (UVR, 280–400 nm) in the ocean's upper mixed layers. Nevertheless, effects of increasing CO2-induced ocean acidification and warming have rarely been investigated in the presence of UVR. We examined calcification and photosynthetic carbon fixation performance in the most cosmopolitan coccolithophorid, Emiliania huxleyi, grown under high (1000 μatm, HC; pHT: 7.70) and low (400 μatm, LC; pHT: 8.02) CO2 levels, at 15 °C (LT), 20 °C (MT) and 24 °C (HT) with or without UVR. The HC treatment didn't affect photosynthetic carbon fixation at 15 °C, but significantly enhanced it with increasing temperature. Exposure to UVR inhibited photosynthesis, with higher inhibition by UVA (320–395 nm) than UVB (295–320 nm), except in the HC and 24 °C-grown cells, in which UVB caused more inhibition than UVA. Reduced thickness of the coccolith layer in the HC-grown cells appeared to be responsible for the UV-induced inhibition, and an increased repair rate of UVA-derived damage in the HCHT-grown cells could be responsible for lowered UVA-induced inhibition. While calcification was reduced with the elevated CO2 concentration, exposure to UVB or UVA affected it differentially, with the former inhibiting and the latter enhancing it. UVA-induced stimulation of calcification was higher in the HC-grown cells at 15 and 20 °C, whereas at 24 °C, observed enhancement was not significant. The calcification to photosynthesis ratio (Cal / Pho ratio) was lower in the HC treatment, and increasing temperature also lowered the value. However, at 20 and 24 °C, exposures to UVR significantly increased the Cal / Pho ratio, especially in HC-grown cells, by up to 100 %. This implies that UVR can counteract the negative effects of the greenhouse treatment on the Cal / Pho ratio, and so may be a key stressor when considering the impacts of future greenhouse conditions on E. huxleyi.


2022 ◽  
Vol 294 ◽  
pp. 118643
Author(s):  
Juan Yu ◽  
Ji-Yuan Tian ◽  
Guang Gao ◽  
Rui Xu ◽  
Jing-Guang Lai ◽  
...  

Biomedicines ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 77 ◽  
Author(s):  
Prasedya ◽  
Syafitri ◽  
Geraldine ◽  
Hamdin ◽  
Frediansyah ◽  
...  

Sunscreens today contain several synthetic UV (Ultraviolet) filter molecules to protect the skin epidermis from UV radiation damage. However, these molecules may create several negative effects on human skin. Due to this condition, there is an increase in the development of natural products to replace uses of these synthetic chemicals. Brown macroalgae Sargassum has been recently studied for its photoprotective activities. The purpose of this study is to investigate photoprotective activity of one of most abundant Sargassum species in Lombok coast; Sargassum cristaefolium. Spectrophotometry analysis with UV-VIS revealed the UV spectra absorbing capability of Sargassum cristaefolium (SC) in the UVA spectrum range (314–400 nm). Furthermore, spectrometry analyses with LC-MS revealed the existence of UV absorbing compound MAA-palythene. In correlation, SC ethanol extracts also demonstrate that it could protect DNA from UVA irradiation as analyzed in vitro in HeLa cell model. The effects of SC on UVA exposed-dorsal mice skin have also shown interesting results, as mice pretreated with SC before UVA exposure showed protective activity on the epidermal integrity similar as positive control. Whereas, UV exposed mice without SC or commercial products resulted in increased epidermal thickness, which is the common parameter of skin photoaging. In addition, pretreated mice with SC also show protective effects in the formation of collagen connective tissues. Overall, current results show promising photoprotective activity of SC against UV radiation. More advanced investigations of SC as a potential photoprotective agent would be reasonable for development of macroalgae-based natural skin protection products.


2016 ◽  
Vol 13 (16) ◽  
pp. 4637-4643 ◽  
Author(s):  
Juntian Xu ◽  
Lennart T. Bach ◽  
Kai G. Schulz ◽  
Wenyan Zhao ◽  
Kunshan Gao ◽  
...  

Abstract. Coccolithophores are a group of phytoplankton species which cover themselves with small scales (coccoliths) made of calcium carbonate (CaCO3). The reason why coccolithophores form these calcite platelets has been a matter of debate for decades but has remained elusive so far. One hypothesis is that they play a role in light or UV protection, especially in surface dwelling species like Emiliania huxleyi, which can tolerate exceptionally high levels of solar radiation. In this study, we tested this hypothesis by culturing a calcified and a naked strain under different light conditions with and without UV radiation. The coccoliths of E. huxleyi reduced the transmission of visible radiation (400–700 nm) by 7.5 %, that of UV-A (315–400 nm) by 14.1 % and that of UV-B (280–315 nm) by 18.4 %. Growth rates of the calcified strain (PML B92/11) were about 2 times higher than those of the naked strain (CCMP 2090) under indoor constant light levels in the absence of UV radiation. When exposed to outdoor conditions (fluctuating sunlight with UV radiation), growth rates of calcified cells were almost 3.5 times higher compared to naked cells. Furthermore, the relative electron transport rate was 114 % higher and non-photochemical quenching (NPQ) was 281 % higher in the calcified compared to the naked strain, implying higher energy transfer associated with higher NPQ in the presence of calcification. When exposed to natural solar radiation including UV radiation, the maximal quantum yield of photosystem II was only slightly reduced in the calcified strain but strongly reduced in the naked strain. Our results reveal an important role of coccoliths in mitigating light and UV stress in E. huxleyi.


2009 ◽  
Vol 54 (6) ◽  
pp. 1855-1862 ◽  
Author(s):  
Kunshan Gao ◽  
Zuoxi Ruan ◽  
Virginia E. Villafañe ◽  
Jean-Pierre Gattuso ◽  
E. Walter Helbling

2021 ◽  
Vol 9 (12) ◽  
pp. 2429
Author(s):  
Charlotte Eich ◽  
Sven B. E. H. Pont ◽  
Corina P. D. Brussaard

Polar seas are under threat of enhanced UV-radiation as well as increasing shipping activities. Considering the ecological importance of marine viruses, it is timely to study the impact of UV-AB on Arctic phytoplankton host–virus interactions and also test the efficacy of ballast water (BW) UV-C treatment on virus infectivity. This study examined the effects of: (i) ecologically relevant doses of UV-AB radiation on Micromonas polaris RCC2258 and its virus MpoV-45T, and (ii) UV-C radiation (doses 25–800 mJ cm−2) on MpoV-45T and other temperate algal viruses. Total UV-AB exposure was 6, 12, 28 and 48 h (during the light periods, over 72 h total). Strongest reduction in algal growth and photosynthetic efficiency occurred for 28 and 48 h UV-AB treatments, and consequently the virus production rates and burst sizes were reduced by more than half (compared with PAR-only controls). For the shorter UV-AB exposed cultures, negative effects by UV (especially Fv/Fm) were overcome without impacting virus proliferation. To obtain the BW desired log−4 reduction in virus infectivity, a UV-C dose of at least 400 mJ cm−2 was needed for MpoV-45T and the temperate algal viruses. This is higher than the commonly used dose of 300 mJ cm−2 in BW treatment.


2019 ◽  
Vol 16 (22) ◽  
pp. 4393-4409
Author(s):  
Xinwei Wang ◽  
Feixue Fu ◽  
Pingping Qu ◽  
Joshua D. Kling ◽  
Haibo Jiang ◽  
...  

Abstract. Global warming will be combined with predicted increases in thermal variability in the future surface ocean, but how temperature dynamics will affect phytoplankton biology and biogeochemistry is largely unknown. Here, we examine the responses of the globally important marine coccolithophore Emiliania huxleyi to thermal variations at two frequencies (1 d and 2 d) at low (18.5 ∘C) and high (25.5 ∘C) mean temperatures. Elevated temperature and thermal variation decreased growth, calcification and physiological rates, both individually and interactively. The 1 d thermal variation frequencies were less inhibitory than 2 d variations under high temperatures, indicating that high-frequency thermal fluctuations may reduce heat-induced mortality and mitigate some impacts of extreme high-temperature events. Cellular elemental composition and calcification was significantly affected by both thermal variation treatments relative to each other and to the constant temperature controls. The negative effects of thermal variation on E. huxleyi growth rate and physiology are especially pronounced at high temperatures. These responses of the key marine calcifier E. huxleyi to warmer, more variable temperature regimes have potentially large implications for ocean productivity and marine biogeochemical cycles under a future changing climate.


2021 ◽  
Vol 28 ◽  
Author(s):  
Francesca Gado ◽  
Maria Digiacomo ◽  
Jasmine Esposito Salsano ◽  
Marco Macchia ◽  
Clementina Manera

: Several clinical studies have shown that exposure of skin to solar ultraviolet (UV) radiation causes adverse effects, such as inflammation, oxidative stress and DNA damage. As a result, different skin disorders can arise among which skin cancer, including non-melanoma skin cancer (NMSC) and melanoma (MM). Phenolic compounds are plant-derived secondary metabolites with a well-known antioxidant activity, able to counteract the negative effects of UV radiation. In this review we discuss the effects of some selected phenols on NMSC and MM, demonstrating that they can be useful in the prevention and in the treatment of these types of tumors. Moreover, we report the mechanisms by which these phenols carry out their antitumor action. In vitro and in vivo studies have highlighted that many phenols are capable of inducing photoprotection, apoptosis and autophagy. They can also reduce DNA methylation, tumorigenesis, tumor incidence and proliferation. Moreover, we describe some examples of plant extracts, whose anticancer activity appears to be better than that of single phenols. A great concordance of results emerged, despite the differences in experimental methods. Therefore, the knowledge compiled here could provide the basis for conducing some well-organized clinical trials to validate the chemopreventive and the therapeutic potential of some phenolic compounds in patients with NMSC and MM.


2013 ◽  
Vol 368 (1627) ◽  
pp. 20130049 ◽  
Author(s):  
Ina Benner ◽  
Rachel E. Diner ◽  
Stephane C. Lefebvre ◽  
Dian Li ◽  
Tomoko Komada ◽  
...  

Increased atmospheric p CO 2 is expected to render future oceans warmer and more acidic than they are at present. Calcifying organisms such as coccolithophores that fix and export carbon into the deep sea provide feedbacks to increasing atmospheric p CO 2 . Acclimation experiments suggest negative effects of warming and acidification on coccolithophore calcification, but the ability of these organisms to adapt to future environmental conditions is not well understood. Here, we tested the combined effect of p CO 2 and temperature on the coccolithophore Emiliania huxleyi over more than 700 generations. Cells increased inorganic carbon content and calcification rate under warm and acidified conditions compared with ambient conditions, whereas organic carbon content and primary production did not show any change. In contrast to findings from short-term experiments, our results suggest that long-term acclimation or adaptation could change, or even reverse, negative calcification responses in E. huxleyi and its feedback to the global carbon cycle. Genome-wide profiles of gene expression using RNA-seq revealed that genes thought to be essential for calcification are not those that are most strongly differentially expressed under long-term exposure to future ocean conditions. Rather, differentially expressed genes observed here represent new targets to study responses to ocean acidification and warming.


Sign in / Sign up

Export Citation Format

Share Document