Self-organizing maps and cluster analysis in elite and sub-elite athletic performance

2013 ◽  
pp. 171-185
2018 ◽  
Vol 3 (1) ◽  
pp. 52-61 ◽  
Author(s):  
Srinivasa Rao Mutheneni ◽  
Rajasekhar Mopuri ◽  
Suchithra Naish ◽  
Deepak Gunti ◽  
Suryanarayana Murty Upadhyayula

2011 ◽  
Vol 8 (2) ◽  
pp. 3047-3083 ◽  
Author(s):  
R. Ley ◽  
M. C. Casper ◽  
H. Hellebrand ◽  
R. Merz

Abstract. Catchments show a wide range of response behaviour, even if they are adjacent. For many purposes it is necessary to characterise and classify them, e.g. for regionalisation, prediction in ungauged catchments, model parameterisation. In this study, we investigate hydrological similarity of catchments with respect to their response behaviour. We analyse more than 8200 event runoff coefficients (ERCs) and flow duration curves of 53 gauged catchments in Rhineland-Palatinate, Germany, for the period from 1993 to 2008, covering a huge variability of weather and runoff conditions. The spatio-temporal variability of event-runoff coefficients and flow duration curves are assumed to represent how different catchments "transform" rainfall into runoff. From the runoff coefficients and flow duration curves we derive 12 signature indices describing various aspects of catchment response behaviour to characterise each catchment. Hydrological similarity of catchments is defined by high similarities of their indices. We identify, analyse and describe hydrologically similar catchments by cluster analysis using Self-Organizing Maps (SOM). As a result of the cluster analysis we get five clusters of similarly behaving catchments where each cluster represents one differentiated class of catchments. As catchment response behaviour is supposed to be dependent on its physiographic and climatic characteristics, we compare groups of catchments clustered by response behaviour with clusters of catchments based on catchment properties. Results show an overlap of 67% between these two pools of clustered catchments which can be improved using the topologic correctness of SOMs.


2011 ◽  
Vol 15 (9) ◽  
pp. 2947-2962 ◽  
Author(s):  
R. Ley ◽  
M. C. Casper ◽  
H. Hellebrand ◽  
R. Merz

Abstract. Catchments show a wide range of response behaviour, even if they are adjacent. For many purposes it is necessary to characterise and classify them, e.g. for regionalisation, prediction in ungauged catchments, model parameterisation. In this study, we investigate hydrological similarity of catchments with respect to their response behaviour. We analyse more than 8200 event runoff coefficients (ERCs) and flow duration curves of 53 gauged catchments in Rhineland-Palatinate, Germany, for the period from 1993 to 2008, covering a huge variability of weather and runoff conditions. The spatio-temporal variability of event-runoff coefficients and flow duration curves are assumed to represent how different catchments "transform" rainfall into runoff. From the runoff coefficients and flow duration curves we derive 12 signature indices describing various aspects of catchment response behaviour to characterise each catchment. Hydrological similarity of catchments is defined by high similarities of their indices. We identify, analyse and describe hydrologically similar catchments by cluster analysis using Self-Organizing Maps (SOM). As a result of the cluster analysis we get five clusters of similarly behaving catchments where each cluster represents one differentiated class of catchments. As catchment response behaviour is supposed to be dependent on its physiographic and climatic characteristics, we compare groups of catchments clustered by response behaviour with clusters of catchments based on catchment properties. Results show an overlap of 67% between these two pools of clustered catchments which can be improved using the topologic correctness of SOMs.


2001 ◽  
Vol 23 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Torsten Mattfeldt ◽  
Hubertus Wolter ◽  
Ralf Kemmerling ◽  
Hans‐Werner Gottfried ◽  
Hans A. Kestler

Comparative genomic hybridization (CGH) is a modern genetic method which enables a genome‐wide survey of chromosomal imbalances. For each chromosome region, one obtains the information whether there is a loss or gain of genetic material, or whether there is no change at that region. Usually it is not possible to evaluate all 46 chromosomes of a metaphase, therefore several (up to 20 or more) metaphases are analyzed per individual, and expressed as average. Mostly one does not study one individual alone but groups of 20–30 individuals. Therefore, large amounts of data quickly accumulate which must be put into a logical order. In this paper we present the application of a self‐organizing map (Genecluster) as a tool for cluster analysis of data from pT2N0 prostate cancer cases studied by CGH. Self‐organizing maps are artificial neural networks with the capability to form clusters on the basis of an unsupervised learning rule, i.e., in our examples it gets the CGH data as only information (no clinical data). We studied a group of 40 recent cases without follow‐up, an older group of 20 cases with follow‐up, and the data set obtained by pooling both groups. In all groups good clusterings were found in the sense that clinically similar cases were placed into the same clusters on the basis of the genetic information only. The data indicate that losses on chromosome arms 6q, 8p and 13q are all frequent in pT2N0 prostatic cancer, but the loss on 8p has probably the largest prognostic importance.


2018 ◽  
Vol 24 (1) ◽  
pp. 120-130 ◽  
Author(s):  
Dominik Sacha ◽  
Matthias Kraus ◽  
Jurgen Bernard ◽  
Michael Behrisch ◽  
Tobias Schreck ◽  
...  

2021 ◽  
Author(s):  
Ahmad Afif Supianto ◽  
Onky Prasetya ◽  
Syaiful Anam ◽  
Tibyani Tibyani ◽  
Hilman Ferdinandus Pardede ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document