The disturbance regime concept

Author(s):  
Brian J. Harvey ◽  
Sarah J. Hart ◽  
C. Alina Cansler
Keyword(s):  
2016 ◽  
Vol 24 (3) ◽  
pp. 233-243 ◽  
Author(s):  
Chris Stockdale ◽  
Mike Flannigan ◽  
Ellen Macdonald

As our view of disturbances such as wildfire has shifted from prevention to recognizing their ecological necessity, so too forest management has evolved from timber-focused even-aged management to more holistic paradigms like ecosystem-based management. Emulation of natural disturbance (END) is a variant of ecosystem management that recognizes the importance of disturbance for maintaining ecological integrity. For END to be a successful model for forest management we need to describe disturbance regimes and implement management actions that emulate them, in turn achieving our objectives for forest structure and function. We review the different components of fire regimes (cause, frequency, extent, timing, and magnitude), we describe low-, mixed-, and high-severity fire regimes, and we discuss key issues related to describing these regimes. When characterizing fire regimes, different methods and spatial and temporal extents result in wide variation of estimates for different fire regime components. Comparing studies is difficult as few measure the same components; some methods are based on the assumption of a high-severity fire regime and are not suited to detecting mixed- or low-severity regimes, which are critical to END management, as this would affect retention in harvested areas. We outline some difficulties with using fire regimes as coarse filters for forest management, including (i) not fully understanding the interactions between fire and other disturbance agents, (ii) assuming that fire is strictly an exogenous disturbance agent that exerts top-down control of forest structure while ignoring numerous endogenous and bottom-up feedbacks on fire effects, and (iii) assuming by only replicating natural disturbance patterns we preserve ecological processes and vital ecosystem components. Even with a good understanding of a fire regime, we would still be challenged with choosing the temporal and spatial scope for the disturbance regime we are trying to emulate. We cannot yet define forest conditions that will arise from variations in disturbance regime; this then limits our ability to implement management actions that will achieve those conditions. We end by highlighting some important knowledge gaps about fire regimes and how the END model could be strengthened to achieve a more sustainable form of forest management.


Botany ◽  
2020 ◽  
Vol 98 (3) ◽  
pp. 147-160
Author(s):  
Heloisa Dantas Brum ◽  
Alexandre F. Souza

Euterpe precatoria Mart. is the most abundant plant species in the Amazon basin, and one of the main non-timber forest products on the continent. A thorough understanding of the ecology of this species is needed to support sustainable management initiatives. Resource availability, disturbance regime, and human management are some of the main factors influencing population structure. We described the species’ life stages, evaluated its allometric relationships, and assessed the effects of habitat type (floodplain and upland) and proximity to human settlements on population size distribution in the Central Amazon near the Purus River. The height:diameter ratio increased from Seedlings to Juvenile 2, but decreased from Juvenile 2 to Reproductive 2, indicating changing height investment for any given diameter along these life stages. There was a marked habitat dependency in both the density and population size distribution, with populations in upland forests dominated by juveniles, whereas populations in the floodplains were dominated by reproductive palms. Proximity to human settlements was not related to population structure parameters. Our results suggest that the disturbance regime may have opposite meanings in várzea forests, where it limits recruitment under increased light levels, and in terra firme forests, where it may stimulate recruitment under limited light conditions.


Ecosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Erica A. Newman ◽  
Mark Q. Wilber ◽  
Karen E. Kopper ◽  
Max A. Moritz ◽  
Donald A. Falk ◽  
...  

Ecosphere ◽  
2018 ◽  
Vol 9 (3) ◽  
pp. e02062 ◽  
Author(s):  
Michelle L. Brown ◽  
Charles D. Canham ◽  
Lora Murphy ◽  
Therese M. Donovan

Author(s):  
Ellen Wohl

Historical range of variability (HRV) describes the conditions of a natural system prior to intensive human alteration of that system. In this context, a natural system can be an ecosystem or a particular component of an ecosystem. Ecosystem components can be quite diverse, including the population of a species or geographic range of a species; an aspect of the disturbance regime, such as the frequency, severity, and spatial extent of wildfire or drought; or physicochemical parameters, such as water chemistry. Regardless of the component to which HRV is applied, the intent is to understand the range of variations in relevant parameters in the absence of human influence on the system. With respect to environmental science, deviations from HRV are taken as evidence of human influence on the system under consideration, and resource management is designed to maintain systems within HRV or within a socially preferred range based on HRV. The concept of HRV was initially developed by ecologists working in North America, and it was applied to understanding ecosystem characteristics prior to European settlement of a region. Although HRV was first mentioned in the early to mid-1990s, the idea of using historical conditions as a reference for ecosystem management goes back much further. HRV built on this earlier work by explicitly considering spatial and temporal variability of system components and processes. Systems exhibit variability through time because conditions change in response to disturbances. The concepts of Disturbance Regime and HRV are thus closely coupled. The assumption underlying HRV is that a system exhibits characteristic behavior and complexity when disturbances occur with a characteristic behavior through time. If human activities alter the disturbance regime, the system changes so as to exceed the bounds described by HRV. HRV is now used by scholars in diverse disciplines, and it is sometimes defined for very different time periods. HRV has been used, for example, to refer to variability during the recent past and intensive human alteration of the system. Consequently, it is important to understand the manner in which HRV is being defined in any particular study. HRV is also referred to as range of natural variability and reference variability. Regardless of the phrase used, the underlying concept represents some of the most fundamental questions we can ask in environmental science: What is the natural range of variability in a system, and in what manner have human activities altered this range?


2020 ◽  
Vol 460 ◽  
pp. 117821
Author(s):  
Jan Douda ◽  
Alena Havrdová ◽  
Pavel Janda ◽  
Bohumil Mandák

Sign in / Sign up

Export Citation Format

Share Document