Functional Organization of the Rat Brain

2018 ◽  
pp. 207-228
Author(s):  
Robert. Thompson
1990 ◽  
Vol 10 (12) ◽  
pp. 6533-6543 ◽  
Author(s):  
G M Hobson ◽  
G R Molloy ◽  
P A Benfield

The functional organization of the rat brain creatine kinase (ckb) promoter was analyzed by deletion, linker scanning, and substitution mutagenesis. Mutations were introduced into the ckb promoter of hybrid ckb/neo (neomycin resistance gene) genes, and the mutant genes were expressed transiently in HeLa cells. Expression was assayed by primer extension analysis of neo RNA, which allowed the transcription start sites and the amount of transcription to be determined. Transfections and primer extension reactions were internally controlled by simultaneous analysis of transcription from the adenovirus VA gene located on the same plasmid as the hybrid ckb/neo gene. We demonstrate that 195 bp of the ckb promoter is sufficient for efficient in vivo expression in HeLa cells. A nonconsensus TTAA element at -28 bp appears to provide the TATA box function for the ckb promoter in vivo. Two CCAAT elements, one at -84 bp and the other at -54 bp, and a TATAAA TA element (a consensus TATA box sequence) at -66 bp are required for efficient transcription from the TTAA element. In addition, we present evidence that the consensus beta-globin TATA box responds to the TATAAATA element in the same way as the ckb nonconsensus TTAA element.


1990 ◽  
Vol 10 (12) ◽  
pp. 6533-6543
Author(s):  
G M Hobson ◽  
G R Molloy ◽  
P A Benfield

The functional organization of the rat brain creatine kinase (ckb) promoter was analyzed by deletion, linker scanning, and substitution mutagenesis. Mutations were introduced into the ckb promoter of hybrid ckb/neo (neomycin resistance gene) genes, and the mutant genes were expressed transiently in HeLa cells. Expression was assayed by primer extension analysis of neo RNA, which allowed the transcription start sites and the amount of transcription to be determined. Transfections and primer extension reactions were internally controlled by simultaneous analysis of transcription from the adenovirus VA gene located on the same plasmid as the hybrid ckb/neo gene. We demonstrate that 195 bp of the ckb promoter is sufficient for efficient in vivo expression in HeLa cells. A nonconsensus TTAA element at -28 bp appears to provide the TATA box function for the ckb promoter in vivo. Two CCAAT elements, one at -84 bp and the other at -54 bp, and a TATAAA TA element (a consensus TATA box sequence) at -66 bp are required for efficient transcription from the TTAA element. In addition, we present evidence that the consensus beta-globin TATA box responds to the TATAAATA element in the same way as the ckb nonconsensus TTAA element.


Author(s):  
D.L. Spector ◽  
S. Huang ◽  
S. Kaurin

We have been interested in the organization of RNA polymerase II transcription and pre-mRNA splicing within the cell nucleus. Several models have been proposed for the functional organization of RNA within the eukaryotic nucleus and for the relationship of this organization to the distribution of pre-mRNA splicing factors. One model suggests that RNAs which must be spliced are capable of recruiting splicing factors to the sites of transcription from storage and/or reassembly sites. When one examines the organization of splicing factors in the nucleus in comparison to the sites of chromatin it is clear that splicing factors are not localized in coincidence with heterochromatin (Fig. 1). Instead, they are distributed in a speckled pattern which is composed of both perichromatin fibrils and interchromatin granule clusters. The perichromatin fibrils are distributed on the periphery of heterochromatin and on the periphery of interchromatin granule clusters as well as being diffusely distributed throughout the nucleoplasm. These nuclear regions have been previously shown to represent initial sites of incorporation of 3H-uridine.


Author(s):  
David L. Spector ◽  
Robert J. Derby

Studies in our laboratory are involved in evaluating the structural and functional organization of the mammalian cell nucleus. Since several major classes (U1, U2, U4/U6, U5) of small nuclear ribonucleoprotein particles (snRNPs) play a crucial role in the processing of pre-mRNA molecules, we have been interested in the localization of these particles within the cell nucleus. Using pre-embedding immunoperoxidase labeling combined with 3-dimensional reconstruction, we have recently shown that nuclear regions enriched in snRNPs form a reticular network within the nucleoplasm which extends between the nucleolar surface and the nuclear envelope. In the present study we were inte rested in extending these nuclear localizations using cell preparation techniques which avoid slow penetration of fixatives, chemical crosslinking of potential antigens and solvent extraction. CHOC 400 cells were cryofixed using a CF 100 ultra rapid cooling device (LifeCell Corp.). After cryofixation cells were molecular distillation dried, vapor osmicated, in filtra ted in 100% Spurr resin in vacuo and polymerized in molds a t 60°C. Using this procedure we were able to evaluate the distribution of snRNPs in resin embedded cells which had not been chemically fixed, incubated in cryoprotectants or extracted with solvents.


2000 ◽  
Vol 12 (12) ◽  
pp. 4318-4330 ◽  
Author(s):  
Nathalie Moragues ◽  
Philippe Ciofi ◽  
Pierrette Lafon ◽  
Marie-Francoise Odessa ◽  
Gerard Tramu ◽  
...  

2001 ◽  
Vol 13 (1) ◽  
pp. 119-128 ◽  
Author(s):  
Vemuganti L. Raghavendra Rao ◽  
Aclan Dogan ◽  
Kellie K. Bowen ◽  
Kathryn G. Todd ◽  
Robert J. Dempsey

2001 ◽  
Vol 88 (2) ◽  
pp. 75-80 ◽  
Author(s):  
Ling Dong Kong ◽  
Ren Xiang Tan ◽  
Anthony Yiu Ho Woo ◽  
Christopher Hon Ki Cheng2Note

Sign in / Sign up

Export Citation Format

Share Document