The (re)invocation of race in forensic genetics through forensic DNA phenotyping technology

2021 ◽  
pp. 199-222
Author(s):  
Filipa Queirós
Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 708 ◽  
Author(s):  
Leire Palencia-Madrid ◽  
Catarina Xavier ◽  
María de la Puente ◽  
Carsten Hohoff ◽  
Christopher Phillips ◽  
...  

The study of DNA to predict externally visible characteristics (EVCs) and the biogeographical ancestry (BGA) from unknown samples is gaining relevance in forensic genetics. Technical developments in Massively Parallel Sequencing (MPS) enable the simultaneous analysis of hundreds of DNA markers, which improves successful Forensic DNA Phenotyping (FDP). The EU-funded VISAGE (VISible Attributes through GEnomics) Consortium has developed various targeted MPS-based lab tools to apply FDP in routine forensic analyses. Here, we present an evaluation of the VISAGE Basic tool for appearance and ancestry prediction based on PowerSeq chemistry (Promega) on a MiSeq FGx System (Illumina). The panel consists of 153 single nucleotide polymorphisms (SNPs) that provide information about EVCs (41 SNPs for eye, hair and skin color from HIrisPlex-S) and continental BGA (115 SNPs; three overlap with the EVCs SNP set). The assay was evaluated for sensitivity, repeatability and genotyping concordance, as well as its performance with casework-type samples. This targeted MPS assay provided complete genotypes at all 153 SNPs down to 125 pg of input DNA and 99.67% correct genotypes at 50 pg. It was robust in terms of repeatability and concordance and provided useful results with casework-type samples. The results suggest that this MPS assay is a useful tool for basic appearance and ancestry prediction in forensic genetics for users interested in applying PowerSeq chemistry and MiSeq for this purpose.


Medicina ◽  
2021 ◽  
Vol 57 (3) ◽  
pp. 226
Author(s):  
Pamela Tozzo ◽  
Arianna Delicati ◽  
Anna Chiara Frigo ◽  
Luciana Caenazzo

Background and objectives: Over the last two decades, human DNA identification and kinship tests have been conducted mainly through the analysis of short tandem repeats (STRs). However, other types of markers, such as insertion/deletion polymorphisms (InDels), may be required when DNA is highly degraded. In forensic genetics, tumor samples may sometimes be used in some cases of human DNA identification and in paternity tests. Nevertheless, tumor genomic instability related to forensic DNA markers should be considered in forensic analyses since it can compromise genotype attribution. Therefore, it is useful to know what impact tumor transformation may have on the forensic interpretation of the results obtained from the analysis of these polymorphisms. Materials and Methods: The aim of this study was to investigate the genomic instability of InDels and STRs through the analysis of 55 markers in healthy tissue and tumor samples (hepatic, gastric, breast, and colorectal cancer) in 66 patients. The evaluation of genomic instability was performed comparing InDel and STR genotypes of tumor samples with those of their healthy counterparts. Results: With regard to STRs, colorectal cancer was found to be the tumor type affected by the highest number of mutations, whereas in the case of InDels the amount of genetic mutations turned out to be independent of the tumor type. However, the phenomena of genomic instability, such as loss of heterozygosity (LOH) and microsatellite instability (MSI), seem to affect InDels more than STRs hampering genotype attribution. Conclusion: We suggest that the use of STRs rather than InDels could be more suitable in forensic genotyping analyses given that InDels seem to be more affected than STRs by mutation events capable of compromising genotype attribution.


2020 ◽  
pp. 1357034X2091916
Author(s):  
Rafaela Granja ◽  
Helena Machado ◽  
Filipa Queirós

Forensic DNA phenotyping is a genetic technology that might be used in criminal investigations. Based on DNA samples of the human body found at crime scenes, it allows to infer externally visible characteristics (such as eye, hair and skin colour) and continental-based biogeographical ancestry. By indicating the probable visible appearance of a criminal suspect, forensic DNA phenotyping allows to narrow down the focus of a criminal investigation. In this article, drawing on interviews with forensic geneticists, we explore how their narratives translate contemporary focus on criminal molecularized bodies. We propose the concept of (de)materialization to approach three aspects of the forensic geneticists’ views. The first regards considering bodies as mutable entities. The second relates to socially contingent meanings attributed to bodies. The third regards to controversies surrounding data reliability. By reflecting upon the (de)materialization of criminal bodies, forensic geneticists juxtapose the defence and unsettling of forensic DNA phenotyping claims.


Sign in / Sign up

Export Citation Format

Share Document