Factor Intensity and Factor Abundance

Author(s):  
Miltiades Ghacholiades
2019 ◽  
Author(s):  
Dieison Lenon Casagrande ◽  
Álvaro Barrantes Hidalgo ◽  
Paulo Ricardo Feistel
Keyword(s):  

1978 ◽  
Vol 17 (30) ◽  
pp. 124-131
Author(s):  
ALLAN C. DeSEPRA ◽  
HILLARD G. HUNTINGTON

2018 ◽  
Author(s):  
Massimiliano Gaetani ◽  
Pierre Sabatier ◽  
Amir Ata Saei ◽  
Christian Beusch ◽  
Zhe Yang ◽  
...  

Various factors, including drugs as well as non-molecular influences, induce alterations in the stability of proteins in cell lysates, living cells and organisms. These alterations can be probed by applying a stability-modifying agent, such as elevated temperature, to a varying degree. As a second dimension of variation, drug concentration or factor intensity can be used. However, the corresponding analysis scheme has a low throughput and high cost. Additionally, since traditional data analysis employs curve fitting, proteins with unusual behavior are frequently ignored. The novel Proteome Integral Stability Alteration (PISA) assay avoids these issues altogether, increasing the analysis throughput by one to two orders of magnitude for unlimited number of parameter variation points. The consumption of the compound and biological material decreases by the same factor. We envision widespread use of the PISA approach in chemical biology and drug development.


2020 ◽  
Vol 117 (6) ◽  
pp. 3261-3269 ◽  
Author(s):  
Yu Zhang ◽  
Anne Pfeiffer ◽  
James M. Tepperman ◽  
Jutta Dalton-Roesler ◽  
Pablo Leivar ◽  
...  

Light-environment signals, sensed by plant phytochrome photoreceptors, are transduced to target genes through direct regulation of PHYTOCHROME-INTERACTING FACTOR (PIF) transcription factor abundance and activity. Previous genome-wide DNA-binding and expression analysis has identified a set of genes that are direct targets of PIF transcriptional regulation. However, quantitative analysis of promoter occupancy versus expression level has suggested that unknown “trans factors” modulate the intrinsic transcriptional activation activity of DNA-bound PIF proteins. Here, using computational analysis of published data, we have identified PSEUDO-RESPONSE REGULATORS (PRR5 and PRR7) as displaying a high frequency of colocalization with the PIF proteins at their binding sites in the promoters of PIF Direct Target Genes (DTGs). We show that the PRRs function to suppress PIF-stimulated growth in the light and vegetative shade and that they repress the rapid PIF-induced expression of PIF-DTGs triggered by exposure to shade. The repressive action of the PRRs on both growth and DTG expression requires the PIFs, indicating direct action on PIF activity, rather than a parallel antagonistic pathway. Protein interaction assays indicate that the PRRs exert their repressive activity by binding directly to the PIF proteins in the nucleus. These findings support the conclusion that the PRRs function as direct outputs from the core circadian oscillator to regulate the expression of PIF-DTGs through modulation of PIF transcriptional activation activity, thus expanding the roles of the multifunctional PIF-signaling hub.


2012 ◽  
pp. 205-251
Author(s):  
Harry P. Bowen ◽  
Abraham Hollander ◽  
Jean-Marie Viaene

Sign in / Sign up

Export Citation Format

Share Document