AGRICULTURAL DROUGHT MANAGEMENT FOR SUSTAINED AGRICULTURAL DEVELOPMENT

Droughts ◽  
2016 ◽  
pp. 494-506
MAUSAM ◽  
2021 ◽  
Vol 67 (1) ◽  
pp. 131-142
Author(s):  
M. V. R. SESHA SAI ◽  
C. S. MURTHY ◽  
K. CHANDRASEKAR ◽  
A. T. JEYASEELAN ◽  
P. G. DIWAKAR ◽  
...  

Drought is a creeping natural disaster with long lasting effects on ecology as well as economy. Monitoring and assessment of drought is a very critical component of the drought management strategy aimed at mitigation of its adverse impacts. Spatial extent, intensity and duration of drought related information is essentially needed for taking the choicest rational decision making in the field of agriculture. Satellite remote sensing enables deriving indicators that explain the prevalence, severity, persistence and spatial extent of the area affected by drought. New satellite missions coupled with novel information extraction techniques are opening new vistas towards monitoring and assessment of drought. Aspects related to agricultural drought are discussed in this paper.


2020 ◽  
Author(s):  
Prabal Das ◽  
Kironmala Chanda ◽  
Rajib Maity

<p><strong>Abstract</strong></p><p>This study aims to evaluate the future evolution of agricultural drought propensity across the Indian subcontinent through Drought Management Index (DMI), a probabilistic measure based on the concept of Reliability-Resilience-Vulnerability (RRV) of soil moisture series at a location/region (Chanda et al., 2014; Chanda and Maity, 2017). In this study, monthly gridded soil moisture products from the Coordinated Regional Climate Downscaling Experiment (CORDEX) framework are used after suitable bias correction, if needed. In the realm of RRV analysis, the fall of soil moisture below a threshold (e.g., Permanent Wilting Point, PWP) is considered as the ‘failure state’. The joint distribution of resilience (the ability of the soil moisture system to recover from a failure state) and vulnerability (severity of the deficit in soil moisture during a failure state) of soil moisture series is modelled through copulas (Nelsen, 2006; Maity, 2018) to develop the DMI.  The results of this study help to assess the evolution of agricultural drought propensity, in terms of DMI, in the near (2011-2040), intermediate (2041-2070) and far future (2071-2099). The findings from multiple emission pathways, designated as Representative Concentration Pathways (RCPs), are compared against each other during the future period and also against the historical period. As an outcome of the study, specific regions across the Indian mainland are identified that need immediate attention for managing sustainable agricultural and allied activities in future.</p><p><strong>Keywords: </strong>Drought Management Index (DMI), soil moisture, future drought propensity, Reliability-Resilience-Vulnerability (RRV), CORDEX</p><p><strong> </strong></p><p><strong> </strong></p><p><strong> </strong></p><p><strong> </strong></p><p><strong>References </strong></p><p>Chanda, K., Maity, R., Sharma, A., and Mehrotra, R. (2014). Spatiotemporal variation of long-term drought propensity through reliability-resilience-vulnerability based Drought Management Index, Water Resources Research, 50(10), 7662-7676.</p><p>Chanda, K., and Maity, R. (2017). Assessment of Trend in Global Drought Propensity in the Twenty-First Century Using Drought Management Index, Water Resources Management, 31(4), 1209-1225.</p><p>Maity, R. (2018). Statistical Methods in Hydrology and Hydroclimatology. Springer.</p><p>Nelsen, R. B. (2007). An introduction to copulas. Springer Science & Business Media.</p>


2012 ◽  
Vol 10 (3) ◽  
pp. 197-207 ◽  
Author(s):  
Won-Ho Nam ◽  
Jin-Yong Choi ◽  
Seung-Hwan Yoo ◽  
Min-Won Jang

2021 ◽  
Author(s):  
Isabella Aitkenhead ◽  
Yuriy Kuleshov ◽  
Andrew B. Watkins ◽  
Jessica Bhardwaj ◽  
Atifa Asghari

2021 ◽  
Author(s):  
ana paez ◽  
Gerald Corzo

<p>Agricultural droughts are becoming more frequent and severe, triggering a range of pervasive effects on society, environment, and economy. In drought-prone areas, multiple interventions aimed at efficient water use and protecting water resources have been used as preventive drought management measures. However, many of these solutions are colloquial or implemented inconsistently, and the actual contribution to drought preparation and response is limited or unclear. This study evaluates the applicability and effectiveness of preventive drought management measures (Hydrological-based measures). To achieve this goal, we divided the work into two stages. First, a quantitative analysis consisted of a review, classification, and mathematical representation of potential preventive drought management measures. Second, a modelling-based analysis compared droughts characteristics before and after implementing three selected measures from the first stage (rainwater harvesting reservoirs, afforestation, and intercropping). The study was developed in the Torola basin, a drought-prone area located in Honduras northeast. We applied the threshold level method to detect and analyse drought characteristics and the Soil Water Assessment Tool (SWAT) for hydrological modelling and representing the selected measures. We defined three scenarios for evaluating the effects of each measure. Results showed that selected measures increase infiltration and soil moisture content alleviating the severity and duration of drought events locally, but enhance the drought situation in surrounding areas.</p><p><strong>Keywords: </strong>Agricultural droughts, preventive drought management measures, SWAT model.</p>


Agronomie ◽  
2001 ◽  
Vol 21 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Pandi Zdruli ◽  
Robert J.A. Jones ◽  
Luca Montanarella

Sign in / Sign up

Export Citation Format

Share Document