Backward, Secondary, and Trace Conditioning

Keyword(s):  
2006 ◽  
Author(s):  
Erica K. Torner ◽  
M. Melissa Flesher ◽  
Anthony M. Cortez ◽  
Dennis Amodeo ◽  
Allen E. Butt

1975 ◽  
Author(s):  
Robert C. Bolles ◽  
Alexis C. Collier
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chang Zhao ◽  
Yves F. Widmer ◽  
Sören Diegelmann ◽  
Mihai A. Petrovici ◽  
Simon G. Sprecher ◽  
...  

AbstractOlfactory learning and conditioning in the fruit fly is typically modelled by correlation-based associative synaptic plasticity. It was shown that the conditioning of an odor-evoked response by a shock depends on the connections from Kenyon cells (KC) to mushroom body output neurons (MBONs). Although on the behavioral level conditioning is recognized to be predictive, it remains unclear how MBONs form predictions of aversive or appetitive values (valences) of odors on the circuit level. We present behavioral experiments that are not well explained by associative plasticity between conditioned and unconditioned stimuli, and we suggest two alternative models for how predictions can be formed. In error-driven predictive plasticity, dopaminergic neurons (DANs) represent the error between the predictive odor value and the shock strength. In target-driven predictive plasticity, the DANs represent the target for the predictive MBON activity. Predictive plasticity in KC-to-MBON synapses can also explain trace-conditioning, the valence-dependent sign switch in plasticity, and the observed novelty-familiarity representation. The model offers a framework to dissect MBON circuits and interpret DAN activity during olfactory learning.


2011 ◽  
Vol 105 (5) ◽  
pp. 2213-2224 ◽  
Author(s):  
Ryan D. Darling ◽  
Kanako Takatsuki ◽  
Amy L. Griffin ◽  
Stephen D. Berry

Trace eyeblink classical conditioning (tEBCC) can be accelerated by making training trials contingent on the naturally generated hippocampal 3- to 7-Hz theta rhythm. However, it is not well-understood how the presence (or absence) of theta affects stimulus-driven changes within the hippocampus and how it correlates with patterns of neural activity in other essential trace conditioning structures, such as the medial prefrontal cortex (mPFC). In the present study, a brain-computer interface delivered paired or unpaired conditioning trials to rabbits during the explicit presence (T+) or absence (T−) of theta, yielding significantly faster behavioral learning in the T+-paired group. The stimulus-elicited hippocampal unit responses were larger and more rhythmic in the T+-paired group. This facilitation of unit responses was complemented by differences in the hippocampal local field potentials (LFP), with the T+-paired group demonstrating more coherent stimulus-evoked theta than T−-paired animals and both unpaired groups. mPFC unit responses in the rapid learning T+-paired group displayed a clear inhibitory/excitatory sequential pattern of response to the tone that was not seen in any other group. Furthermore, sustained mPFC unit excitation continued through the trace interval in T+animals but not in T−animals. Thus theta-contingent training is accompanied by 1) acceleration in behavioral learning, 2) enhancement of the hippocampal unit and LFP responses, and 3) enhancement of mPFC unit responses. Together, these data provide evidence that pretrial hippocampal state is related to enhanced neural activity in critical structures of the distributed network supporting the acquisition of tEBCC.


1995 ◽  
Vol 23 (2) ◽  
pp. 144-153 ◽  
Author(s):  
Robert P. Cole ◽  
Robert C. Barnet ◽  
Ralph R. Miller

2001 ◽  
Vol 76 (3) ◽  
pp. 447-461 ◽  
Author(s):  
Anna V. Beylin ◽  
Chetan C. Gandhi ◽  
Gwendolyn E. Wood ◽  
Andrew C. Talk ◽  
Louis D. Matzel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document