scholarly journals Assessing soil-structure interaction during the 2016 Central Italy seismic sequence (Italy): preliminary results

2016 ◽  
Vol 59 ◽  
Author(s):  
Arrigo Caserta ◽  
Fawzi Doumaz ◽  
Antonio Costanzo ◽  
Anna Gervasi ◽  
William Thorossian ◽  
...  

<p><em>We used the moderate-magnitude aftershocks succeeding to the 2016 August 24<sup>th</sup>, Mw = 6.0, Amatrice (Italy) mainshok to asses, specially during an ongoing seismic sequence, the soil-structure interaction where cultural Heritage is involved. We have chosen as case study the</em><em> San Giovanni Battista</em><em> church (A.D. 1039)  in Acquasanta Terme town, about 20 Km northeast of Amatrice. First of all we studied the soil shaking features in order to characterize the input to the monument. Then, using the recordings in the church, we tried to figure out  how the input seismic energy is distributed over the different monument parts. Some preliminary results are shown and discussed.</em></p><p><em><br /></em></p>

2014 ◽  
Vol 32 ◽  
pp. 276-285 ◽  
Author(s):  
Seyed Mojtaba Hoseyni ◽  
Faramarz Yousefpour ◽  
Ata Aghaei Araei ◽  
Keveh Karimi ◽  
Seyed Mohsen Hoseyni

Author(s):  
Jim Xu ◽  
Sujit Samaddar

The soil-structure interaction (SSI) has a significant impact on nuclear power plant (NPP) structures, especially for massive and rigid structures founded on soils, such as containments. The U.S. Nuclear Regulatory Commission’s (NRC) Standard Review Plan (SRP) provides the requirement and acceptance criteria for incorporating the SSI effect in the seismic design and analyses of NPP structures. The NRC staff uses the SRP for safety review of license applications. Recent studies have indicated that ground motions in recorded real earthquake events have exhibited spatial incoherency in high-frequency contents. Several techniques have been developed to incorporate the incoherency effect in the seismic response analyses. Section 3.7.2 of Revision 3 of the SRP also provided guidance for use in the safety evaluation of seismic analyses considering ground motion spatial incoherency effect. This paper describes a case study of the SSI and incoherency effects on seismic response analyses of NPP structures. The study selected a typical containment structure. The SSI model is generated based on the typical industry practice for SSI computation of containment structures. Specifically, a commercial version of SASSI was used for the study, which considered a surface-founded structure. The SSI model includes the foundation, represented with brick elements, and the superstructure, represented using lumped mass and beams. The study considered various soil conditions and ground motion coherency functions to investigate the effect of the range of soil stiffness and the ground motion incoherency effect on SSI in determining the seismic response of the structures. This paper describes the SSI model development and presents the analysis results as well as insights into the manner in which the SSI and incoherency effects are related to different soil conditions.


Sign in / Sign up

Export Citation Format

Share Document