scholarly journals Théorie générale d’équation de type hyperbolique-parabolique non linéaire

2008 ◽  
Vol Volume 9, 2007 Conference in... ◽  
Author(s):  
Hamidou Touré

International audience We develop general theory for degenerate hyperbolic-parabolic type problems using semi-group theory in Banach spaces. We establish existence, uniqness results and continuous dependance with respects to data for mild solution. Similar results are developped for weak solution of entropy type, and existence of solutions are studied. Nous développons une théorie générale pour des équations d’évolution de type hyperbolique parabolique non linéaire à l’aide de la théorie des semi-groupes non linéaires dans les espaces de Banach. Nous établissons des résultats d’existence, d’unicité et de dépendance continue par rapport aux données d’une bonne solution du problème de Cauchy ou des problèmes aux limites associées à cette équation sous des hypothèses très générales. Avec des hypothèses complémentaires, nous montrons que cette bonne solution est une solution locale de type entropique, nous étudions également l’unicité des solutions faibles et l’existence de solution forte.

2019 ◽  
Vol 27 (3) ◽  
pp. 231-257
Author(s):  
Venkatesh Usha ◽  
Dumitru Baleanu ◽  
Mani Mallika Arjunan

AbstractIn this manuscript we investigate the existence of mild solution for a abstract impulsive neutral integro-differential equation by using semi-group theory and Krasnoselskii-Schaefer fixed point theorem in different approach. At last, an example is also provided to illustrate the obtained results.


Author(s):  
Dimplekumar Chalishajar ◽  
C. Ravichandran ◽  
S. Dhanalakshmi ◽  
R. Murugesu

In this paper, we established the existence of PC-mild solutions for non local fractional impulsive functional integro-differential equations with finite delay. The proofs are obtained by using the techniques of fixed point theorems, semi-group theory and generalized Bellman inequality. In this paper, we have used the distributed characteristic operators to define the mild solution of the system. Results obtained here improve and extend some known results.


2019 ◽  
Vol 2 (2) ◽  
pp. 18 ◽  
Author(s):  
Dimplekumar Chalishajar ◽  
Chokkalingam Ravichandran ◽  
Shanmugam Dhanalakshmi ◽  
Rangasamy Murugesu

In this paper, we establish the existence of piece wise (PC)-mild solutions (defined in Section 2) for non local fractional impulsive functional integro-differential equations with finite delay. The proofs are obtained using techniques of fixed point theorems, semi-group theory and generalized Bellman inequality. In this paper, we used the distributed characteristic operators to define a mild solution of the system. We also discussed the controversy related to the solution operator for the fractional order system using weak and strong Caputo derivatives. Examples are given to illustrate the theory.


Author(s):  
N. S. Wilkes

SynopsisLinear semi-group theory can be used to prove the existence of solutions to the equations of linear elasticity when the elasticity tensor is positive definite. Here, it is shown that this condition is also necessary for the existence of a semi-group. The method is also applied to linear dissipative equations.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Denghao Pang ◽  
Wei Jiang ◽  
Azmat Ullah Khan Niazi ◽  
Jiale Sheng

AbstractIn this paper, we mainly investigate the existence, continuous dependence, and the optimal control for nonlocal fractional differential evolution equations of order (1,2) in Banach spaces. We define a competent definition of a mild solution. On this basis, we verify the well-posedness of the mild solution. Meanwhile, with a construction of Lagrange problem, we elaborate the existence of optimal pairs of the fractional evolution systems. The main tools are the fractional calculus, cosine family, multivalued analysis, measure of noncompactness method, and fixed point theorem. Finally, an example is propounded to illustrate the validity of our main results.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Bingzhi Sun ◽  
Weihua Jiang

Abstract By defining the Banach spaces endowed with the appropriate norm, constructing a suitable projection scheme, and using the coincidence degree theory due to Mawhin, we study the existence of solutions for functional boundary value problems at resonance on the half-line with $\operatorname{dim}\operatorname{Ker}L = 1$ dim Ker L = 1 . And an example is given to show that our result here is valid.


1997 ◽  
pp. 71-86
Author(s):  
Mikhail I. Kadets ◽  
Vladimir M. Kadets
Keyword(s):  

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Jean-Gabriel Luque

International audience We investigate the homogeneous symmetric Macdonald polynomials $P_{\lambda} (\mathbb{X} ;q,t)$ for the specialization $t=q^k$. We show an identity relying the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$ and $P_{\lambda} (\frac{1-q}{1-q^k}\mathbb{X} ;q,q^k)$. As a consequence, we describe an operator whose eigenvalues characterize the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$. Nous nous intéressons aux propriétés des polynômes de Macdonald symétriques $P_{\lambda} (\mathbb{X} ;q,t)$ pour la spécialisation $t=q^k$. En particulier nous montrons une égalité reliant les polynômes $P_{\lambda} (\mathbb{X} ;q,q^k)$ et $P_{\lambda} (\frac{1-q}{1-q^k}\mathbb{X} ;q,q^k)$. Nous en déduisons la description d'un opérateur dont les valeurs propres caractérisent les polynômes $P_{\lambda} (\mathbb{X} ;q,q^k)$.


Sign in / Sign up

Export Citation Format

Share Document