scholarly journals Dendriform structures for restriction-deletion and restriction-contraction matroid Hopf algebras

2016 ◽  
Vol Vol. 17 no. 3 (Combinatorics) ◽  
Author(s):  
Nguyen Hoang-Nghia ◽  
Adrian Tanasa ◽  
Christophe Tollu

International audience We endow the set of isomorphism classes of matroids with a new Hopf algebra structure, in which the coproduct is implemented via the combinatorial operations of restriction and deletion. We also initiate the investigation of dendriform coalgebra structures on matroids and introduce a monomial invariant which satisfy a convolution identity with respect to restriction and deletion.

Author(s):  
R. L. HUDSON

An explicit formula is found for the antipode in Itô–Hopf algebras. The Hopf algebra structure is extended to iterated classical and quantum stochastic integrals. The antipode is related to change of orientation in the simplicial domains of such integrals.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Carolina Benedetti

International audience We provide a Hopf algebra structure on the supercharacter theory for the unipotent upper triangular group of type {D} over a finite field. Also, we make further comments with respect to types {B} and {C}. Type {A} was explored by M. Aguiar et. al (2010), thus this extended abstract is a contribution to understand combinatorially the supercharacter theory of the other classical Lie types. Dotamos con una estructura de álgebra de Hopf la teoría de supercaracteres del grupo de matrices unipotentes triangulares superiores de tipo{D} sobre un cuerpo finito. Ademas, discutimos brevemente los tipos {B} y {C}. El tipo A fue explorado por M. Aguiar et al (2010), por lo tanto este resumen extendido es una contribución para entender combinatoriamente la teoría de supercaracteres de los otros tipos de Lie clásicos. Nous construisons une structure d'algèbre de Hopf sur la thérie des supercharactères du groupe de matrices unipotentes triangulaires supéieures de type {D}. Nous donnons aussi quelques commentaires à l'égard des types {B} et {C} . Le type {A} a été explorée par M. Aguiar et al. (2010), donc ce résumé étendu est une contribution à la théorie combinatoire des supercharactères pour les autres types de Lie classiques. \par


2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Adam Doliwa

We introduce a coloured generalization  $\mathrm{NSym}_A$ of the Hopf algebra of non-commutative symmetric functions  described as a subalgebra of the of rooted ordered coloured trees Hopf algebra. Its natural basis can be identified with the set of sentences over alphabet $A$ (the set of colours). We present also its graded dual algebra $\mathrm{QSym}_A$ of coloured quasi-symmetric functions together with its realization in terms of power series in partially commutative variables.  We provide formulas expressing multiplication, comultiplication and the antipode for these Hopf algebras in various bases — the corresponding generalizations of the complete homogeneous, elementary, ribbon Schur and power sum bases of $\mathrm{NSym}$, and the monomial and fundamental bases of $\mathrm{QSym}$. We study also certain distinguished series of trees in the setting of restricted duals to Hopf algebras.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Nantel Bergeron ◽  
Cesar Ceballos

International audience We introduce a Hopf algebra structure of subword complexes, including both finite and infinite types. We present an explicit cancellation free formula for the antipode using acyclic orientations of certain graphs, and show that this Hopf algebra induces a natural non-trivial sub-Hopf algebra on c-clusters in the theory of cluster algebras.


1999 ◽  
Vol 40 (5) ◽  
pp. 2494-2499 ◽  
Author(s):  
Salih Çelik

1988 ◽  
Vol 31 (2) ◽  
pp. 194-199
Author(s):  
L. Magalhães

AbstractIn this paper we give a description of:(1) the Hopf algebra structure of k*(G; L) when G is a compact, connected Lie group and L is a ring of type Q(P) so that H*(G; L) is torsion free;(2) the algebra structure of k*(G2; L) for L = Z2 or Z.


2019 ◽  
Vol 166 ◽  
pp. 144-170
Author(s):  
Susanna Fishel ◽  
Luc Lapointe ◽  
María Elena Pinto

Sign in / Sign up

Export Citation Format

Share Document