scholarly journals Hopf Algebra Structure of Generalized Quasi-Symmetric Functions in Partially Commutative Variables

2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Adam Doliwa

We introduce a coloured generalization  $\mathrm{NSym}_A$ of the Hopf algebra of non-commutative symmetric functions  described as a subalgebra of the of rooted ordered coloured trees Hopf algebra. Its natural basis can be identified with the set of sentences over alphabet $A$ (the set of colours). We present also its graded dual algebra $\mathrm{QSym}_A$ of coloured quasi-symmetric functions together with its realization in terms of power series in partially commutative variables.  We provide formulas expressing multiplication, comultiplication and the antipode for these Hopf algebras in various bases — the corresponding generalizations of the complete homogeneous, elementary, ribbon Schur and power sum bases of $\mathrm{NSym}$, and the monomial and fundamental bases of $\mathrm{QSym}$. We study also certain distinguished series of trees in the setting of restricted duals to Hopf algebras.

Author(s):  
R. L. HUDSON

An explicit formula is found for the antipode in Itô–Hopf algebras. The Hopf algebra structure is extended to iterated classical and quantum stochastic integrals. The antipode is related to change of orientation in the simplicial domains of such integrals.


2016 ◽  
Vol Vol. 17 no. 3 (Combinatorics) ◽  
Author(s):  
Nguyen Hoang-Nghia ◽  
Adrian Tanasa ◽  
Christophe Tollu

International audience We endow the set of isomorphism classes of matroids with a new Hopf algebra structure, in which the coproduct is implemented via the combinatorial operations of restriction and deletion. We also initiate the investigation of dendriform coalgebra structures on matroids and introduce a monomial invariant which satisfy a convolution identity with respect to restriction and deletion.


2008 ◽  
Vol 60 (2) ◽  
pp. 266-296 ◽  
Author(s):  
Nantel Bergeron ◽  
Christophe Reutenauer ◽  
Mercedes Rosas ◽  
Mike Zabrocki

AbstractWe introduce a natural Hopf algebra structure on the space of noncommutative symmetric functions. The bases for this algebra are indexed by set partitions. We show that there exists a natural inclusion of the Hopf algebra of noncommutative symmetric functions in this larger space. We also consider this algebra as a subspace of noncommutative polynomials and use it to understand the structure of the spaces of harmonics and coinvariants with respect to this collection of noncommutative polynomials and conclude two analogues of Chevalley’s theorem in the noncommutative setting.


1991 ◽  
Vol 01 (02) ◽  
pp. 207-221 ◽  
Author(s):  
JEAN-YVES THIBON

The Hopf algebra structure of the ring of symmetric functions is used to prove a new identity for the internal product, i.e., the operation corresponding to the tensor product of symmetric group representations. From this identity, or by similar techniques which can also involve the λ-ring structure, we derive easy proofs of most known results about this operation. Some of these results are generalized.


10.37236/5949 ◽  
2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Rebecca Patrias

Motivated by work of Buch on set-valued tableaux in relation to the K-theory of the Grassmannian, Lam and Pylyavskyy studied six combinatorial Hopf algebras that can be thought of as K-theoretic analogues of the Hopf algebras of symmetric functions, quasisymmetric functions, noncommutative symmetric functions, and of the Malvenuto-Reutenauer Hopf algebra of permutations. They described the bialgebra structure in all cases that were not yet known but left open the question of finding explicit formulas for the antipode maps. We give combinatorial formulas for the antipode map for the K-theoretic analogues of the symmetric functions, quasisymmetric functions, and noncommutative symmetric functions.


1988 ◽  
Vol 31 (2) ◽  
pp. 194-199
Author(s):  
L. Magalhães

AbstractIn this paper we give a description of:(1) the Hopf algebra structure of k*(G; L) when G is a compact, connected Lie group and L is a ring of type Q(P) so that H*(G; L) is torsion free;(2) the algebra structure of k*(G2; L) for L = Z2 or Z.


Sign in / Sign up

Export Citation Format

Share Document