scholarly journals The Real-rootedness of Eulerian Polynomials via the Hermite–Biehler Theorem

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Arthur L.B. Yang ◽  
Philip B. Zhang

International audience Based on the Hermite–Biehler theorem, we simultaneously prove the real-rootedness of Eulerian polynomials of type $D$ and the real-rootedness of affine Eulerian polynomials of type $B$, which were first obtained by Savage and Visontai by using the theory of $s$-Eulerian polynomials. We also confirm Hyatt’s conjectures on the inter-lacing property of half Eulerian polynomials. Borcea and Brändén’s work on the characterization of linear operators preserving Hurwitz stability is critical to this approach. Basé sur le théorème de Hermite–Biehler, nous prouvons simultanément les polynômes eulériens de type $D$ et les polynômes eulériens affine de type $B$ ont seulement racines réelle, qui sont d’abord obtenue par Savage et Visontai en utilisant le théorie des polynômes $s$-eulériens. Nous confirmons aussi les conjectures de Hyatt sur la propriété entrelacement de polynômes mi-eulériens. Le travail de Borcea et Brändén sur la caractérisation des opérateurs linéaires préservant la stabilité Hurwitz est essentielle à cette approche.

2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Carla D. Savage ◽  
Mirkó Visontai

International audience We give an intrinsic proof of a conjecture of Brenti that all the roots of the Eulerian polynomial of type $D$ are real and a proof of a conjecture of Dilks, Petersen, and Stembridge that all the roots of the affine Eulerian polynomial of type $B$ are real, as well. Nous prouvons, de façon intrinsèque, une conjecture de Brenti affirmant que toutes les racines du polynôme eulérien de type $D$ sont réelles. Nous prouvons également une conjecture de Dilks, Petersen, et Stembridge que toutes les racines du polynôme eulérien affine de type $B$ sont réelles.


10.37236/9037 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Hiranya Kishore Dey ◽  
Sivaramakrishnan Sivasubramanian

The Eulerian polynomial $A_n(t)$ enumerating descents in $\mathfrak{S}_n$ is known to be gamma positive for all $n$. When enumeration is done over the type B and type D Coxeter groups, the type B and type D Eulerian polynomials are also known to be gamma positive for all $n$. We consider $A_n^+(t)$ and $A_n^-(t)$, the polynomials which enumerate descents in the alternating group $\mathcal{A}_n$ and in $\mathfrak{S}_n - \mathcal{A}_n$ respectively.  We show the following results about $A_n^+(t)$ and $A_n^-(t)$: both polynomials are gamma positive iff $n \equiv 0,1$ (mod 4). When $n \equiv 2,3$ (mod 4), both polynomials are not palindromic. When $n \equiv 2$ (mod 4), we show that {\sl two} gamma positive summands add up to give $A_n^+(t)$ and $A_n^-(t)$. When $n \equiv 3$ (mod 4), we show that {\sl three} gamma positive summands add up to give both $A_n^+(t)$ and $A_n^-(t)$.  We show similar gamma positivity results about the descent based type B and type D Eulerian polynomials when enumeration is done over the positive elements in the respective Coxeter groups. We also show that the polynomials considered in this work are unimodal.


Toxins ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 650
Author(s):  
Katia Forti ◽  
Laura Ferroni ◽  
Martina Pellegrini ◽  
Deborah Cruciani ◽  
Antonio De Giuseppe ◽  
...  

Clostridium (C.) perfringens is the causative agent of several diseases and enteric infections in animals and humans. The pathogenicity of the bacterium is largely mediated by the production of a wide range of toxins. Individual C. perfringens strains produce only subsets of this toxin repertoire, which permits the classification in seven toxinotypes (A–G). In addition, a variety of minor toxins further characterizes the single strains. The aim of this work was to evaluate, using Polymerase Chain Reaction (PCR) assays, the diversity of 632 C. perfringens strains isolated in Italy over 15 years. The genotyped strains were analyzed to determine the presence of major and minor toxins (cpe, consensus, and atypical cpb2), their geographical origins, and the source of isolation (animal species or food). Our study shows that toxinotype A had the greatest representation (93%) and correlated mainly with consensus cpb2 in a variety of animal species, as well as with atypical cpb2 in the five food samples. Type D, associated with cpe and atypical cpb2 minor toxins, was identified in 3% of the cases, and type F was identified in 2.5%. Seven type C isolates (1.1%) were detected in cattle, whereas the only type B atypical cpb2 isolated in Italy was detected in a goat, and one type E cpe+atypical cpb2 was detected in a sheep. Type G was not detected.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Mirkó Visontai ◽  
Nathan Williams

International audience We give a multivariate analog of the type B Eulerian polynomial introduced by Brenti. We prove that this multivariate polynomial is stable generalizing Brenti's result that every root of the type B Eulerian polynomial is real. Our proof combines a refinement of the descent statistic for signed permutations with the notion of real stability—a generalization of real-rootedness to polynomials in multiple variables. The key is that our refined multivariate Eulerian polynomials satisfy a recurrence given by a stability-preserving linear operator. Nous prèsentons un raffinement multivariè d'un polynôme eulèrien de type B dèfini par Brenti. En prouvant que ce polynôme est stable nous gènèralisons un rèsultat de Brenti selon laquel chaque racine du polynôme eulèrien de type B est rèelle. Notre preuve combine un raffinement de la statistique des descentes pour les permutations signèes avec la stabilitè—une gènèralisation de la propriètè d'avoir uniquement des racines rèelles aux polynômes en plusieurs variables. La connexion est que nos polynômes eulèriens raffinès satisfont une rècurrence donnèe par un opèrateur linèaire qui prèserve la stabilitè.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Eli Bagno ◽  
Riccardo Biagioli ◽  
Mordechai Novick

International audience The depth statistic was defined for every Coxeter group in terms of factorizations of its elements into product of reflections. Essentially, the depth gives the minimal path cost in the Bruaht graph, where the edges have prescribed weights. We present an algorithm for calculating the depth of a signed permutation which yields a simple formula for this statistic. We use our algorithm to characterize signed permutations having depth equal to length. These are the fully commutative top-and-bottom elements defined by Stembridge. We finally give a characterization of the signed permutations in which the reflection length coincides with both the depth and the length. La statistique profondeur a été introduite par Petersen et Tenner pour tout groupe de Coxeter $W$. Elle est définie pour tout $w \in W$ à partir de ses factorisations en produit de réflexions (non nécessairement simples). Pour le type $B$, nous introduisons un algorithme calculant la profondeur, et donnant une formule explicite pour cette statistique. On utilise par ailleurs cet algorithme pour caractériser tous les éléments ayant une profondeur égale à leur longueur. Ces derniers s’avèrent être les éléments pleinement commutatifs “hauts-et-bas” introduits par Stembridge. Nous donnons enfin une caractérisation des éléments dont la longueur absolue, la profondeur et la longueur coïncident.


2016 ◽  
Vol 20 (4) ◽  
pp. 869-881 ◽  
Author(s):  
Matthew Hyatt
Keyword(s):  
Type B ◽  

2017 ◽  
Vol 31 (2) ◽  
pp. 918-926 ◽  
Author(s):  
Arthur L. B. Yang ◽  
Philip B. Zhang

2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Martin Rubey ◽  
Christian Stump

International audience In this extended abstract, we investigate bijections on various classes of set partitions of classical types that preserve openers and closers. On the one hand we present bijections for types $B$ and $C$ that interchange crossings and nestings, which generalize a construction by Kasraoui and Zeng for type $A$. On the other hand we generalize a bijection to type $B$ and $C$ that interchanges the cardinality of a maximal crossing with the cardinality of a maximal nesting, as given by Chen, Deng, Du, Stanley and Yan for type $A$. For type $D$, we were only able to construct a bijection between non-crossing and non-nesting set partitions. For all classical types we show that the set of openers and the set of closers determine a non-crossing or non-nesting set partition essentially uniquely. Dans ce résumé, nous étudions des bijections entre diverses classes de partitions d'ensemble de types classiques qui préservent les "openers'' et les "closers''. D'une part, nous présentons des bijections pour les types $B$ et $C$ qui échangent croisées et emboôtées, qui généralisent une construction de Kasraoui et Zeng pour le type $A$. D'autre part, nous généralisons une bijection pour le type $B$ et $C$ qui échange la cardinalité d'un croisement maximal avec la cardinalité d'un emboîtement maximal comme il a été fait par Chen, Deng, Du, Stanley et Yan pour le type $A$. Pour le type $D$, nous avons seulement construit une bijection entre les partitions non croisées et non emboîtées. Pour tout les types classiques, nous montrons que l'ensemble des "openers'' et l'ensemble des "closers'' déterminent une partition non croisées ou non emboîtées essentiellement de façon unique.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Yi Su

International audience Curtis-Ingerman-Morrow studied the space of circular planar electrical networks, and classified all possible response matrices for such networks. Lam and Pylyavskyy found a Lie group $EL_{2n}$ whose positive part $(EL_{2n})_{\geq 0}$ naturally acts on the circular planar electrical network via some combinatorial description, where the action is inspired by the star-triangle transformation of the electrical networks. The Lie algebra $el_{2n}$ is semisimple and isomorphic to the symplectic algebra. In the end of their paper, they suggest a generalization of electrical Lie algebras to all finite Dynkin types. We give the structure of the type $B$ electrical Lie algebra $e_{b_{2n}}$. The nonnegative part $(E_{B_{2n}})_{\geq 0}$ of the corresponding Lie group conjecturally acts on a class of "mirror symmetric circular planar electrical networks". This class of networks has interesting combinatorial properties. Finally, we mention some partial results for type $C$ and $D$ electrical Lie algebras, where an analogous story needs to be developed. Curtis, Ingerman et Morrow ont étudié l’espace des réseaux électriques circulaires plans et ont classifié toutes les matrices de réponses possibles pour ces réseaux. Lam et Pylyavskyy ont trouvé un groupe de Lie $EL_{2n}$ dont la partie positive $(EL_{2n})_{\geq 0}$ agit naturellement sur le réseau électrique circulaire plan par une description combinatoire, où l’action est inspirée par la transformation étoile vers triangle des réseaux électriques. L’algèbre de Lie $el_{2n}$ est semi-simple et isomorphe à l’algèbre symplectique. A la fin de leur article, ils proposent une généralisation des algèbres de Lie électriques pour tous les types de Dynkin finis. Nous donnons la structure de l’algèbre de Lie électrique $e_{b_{2n}}$ du type $B$. La partie positive $(E_{B_{2n}})_{\geq 0}$ du groupe de Lie correspondant agit conjecturalement sur une famille de ”miroirs réseaux électriques circulaires symétriques plans”. Cette famille de réseaux a des propriétés combinatoires intéressantes. Nous donnons enfin quelques résultats partiels de l’algèbre de Lie électrique du type $C$ et du type $D$, où une étude analogue doit être développée.


Sign in / Sign up

Export Citation Format

Share Document