scholarly journals Automatic Classification of Restricted Lattice Walks

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Alin Bostan ◽  
Manuel Kauers

International audience We propose an $\textit{experimental mathematics approach}$ leading to the computer-driven $\textit{discovery}$ of various conjectures about structural properties of generating functions coming from enumeration of restricted lattice walks in 2D and in 3D.

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Hoda Bidkhori

International audience In this paper we study finite Eulerian posets which are binomial or Sheffer. These important classes of posets are related to the theory of generating functions and to geometry. The results of this paper are organized as follows: (1) We completely determine the structure of Eulerian binomial posets and, as a conclusion, we are able to classify factorial functions of Eulerian binomial posets; (2) We give an almost complete classification of factorial functions of Eulerian Sheffer posets by dividing the original question into several cases; (3) In most cases above, we completely determine the structure of Eulerian Sheffer posets, a result stronger than just classifying factorial functions of these Eulerian Sheffer posets. We also study Eulerian triangular posets. This paper answers questions posed by R. Ehrenborg and M. Readdy. This research is also motivated by the work of R. Stanley about recognizing the \emphboolean lattice by looking at smaller intervals. Nous étudions les ensembles partiellement ordonnés finis (EPO) qui sont soit binomiaux soit de type Sheffer (deux notions reliées aux séries génératrices et à la géométrie). Nos résultats sont les suivants: (1) nous déterminons la structure des EPO Euleriens et binomiaux; nous classifions ainsi les fonctions factorielles de tous ces EPO; (2) nous donnons une classification presque complète des fonctions factorielles des EPO Euleriens de type Sheffer; (3) dans la plupart de ces cas, nous déterminons complètement la structure des EPO Euleriens et Sheffer, ce qui est plus fort que classifier leurs fonctions factorielles. Nous étudions aussi les EPO Euleriens triangulaires. Cet article répond à des questions de R. Ehrenborg and M. Readdy. Il est aussi motivé par le travail de R. Stanley sur la reconnaissance du treillis booléen via l'étude des petits intervalles.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Sophie Burrill ◽  
Sergi Elizalde ◽  
Marni Mishna ◽  
Lily Yen

International audience We describe a generating tree approach to the enumeration and exhaustive generation of k-nonnesting set partitions and permutations. Unlike previous work in the literature using the connections of these objects to Young tableaux and restricted lattice walks, our approach deals directly with partition and permutation diagrams. We provide explicit functional equations for the generating functions, with k as a parameter. Nous décrivons une approche, basée sur l'utilisation d'arbres de génération, pour énumération et la génération exhaustive de partitions et permutations sans k-emboîtement. Contrairement aux travaux antérieurs qui reposent sur un lien entre ces objets, tableaux de Young et familles de chemins dans des treillis, notre approche traite directement partitions et diagrammes de permutations. Nous fournissons des équations fonctionnelles explicites pour les séries génératrices, avec k en tant que paramètre.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Axel Bacher ◽  
Manuel Kauers ◽  
Rika Yatchak

International audience We continue the investigations of lattice walks in the three-dimensional lattice restricted to the positive octant. We separate models which clearly have a D-finite generating function from models for which there is no reason to expect that their generating function is D-finite, and we isolate a small set of models whose nature remains unclear and requires further investigation. For these, we give some experimental results about their asymptotic behaviour, based on the inspection of a large number of initial terms. At least for some of them, the guessed asymptotic form seems to tip the balance towards non-D-finiteness.


Author(s):  
Paul DeCosta ◽  
Kyugon Cho ◽  
Stephen Shemlon ◽  
Heesung Jun ◽  
Stanley M. Dunn

Introduction: The analysis and interpretation of electron micrographs of cells and tissues, often requires the accurate extraction of structural networks, which either provide immediate 2D or 3D information, or from which the desired information can be inferred. The images of these structures contain lines and/or curves whose orientation, lengths, and intersections characterize the overall network.Some examples exist of studies that have been done in the analysis of networks of natural structures. In, Sebok and Roemer determine the complexity of nerve structures in an EM formed slide. Here the number of nodes that exist in the image describes how dense nerve fibers are in a particular region of the skin. Hildith proposes a network structural analysis algorithm for the automatic classification of chromosome spreads (type, relative size and orientation).


Author(s):  
Yashpal Jitarwal ◽  
Tabrej Ahamad Khan ◽  
Pawan Mangal

In earlier times fruits were sorted manually and it was very time consuming and laborious task. Human sorted the fruits of the basis of shape, size and color. Time taken by human to sort the fruits is very large therefore to reduce the time and to increase the accuracy, an automatic classification of fruits comes into existence.To improve this human inspection and reduce time required for fruit sorting an advance technique is developed that accepts information about fruits from their images, and is called as Image Processing Technique.


Author(s):  
Biswanath Saha ◽  
Parimal Kumar Purkait ◽  
Jayanta Mukherjee ◽  
Arun Kumar Majumdar ◽  
Bandana Majumdar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document