scholarly journals Universal cycles for permutation classes

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Michael Albert ◽  
Julian West

International audience We define a universal cycle for a class of $n$-permutations as a cyclic word in which each element of the class occurs exactly once as an $n$-factor. We give a general result for cyclically closed classes, and then survey the situation when the class is defined as the avoidance class of a set of permutations of length $3$, or of a set of permutations of mixed lengths $3$ and $4$. Nous définissons un cycle universel pour une classe de $n$-permutations comme un mot cyclique dans lequel chaque élément de la classe apparaît une unique fois comme $n$-facteur. Nous donnons un résultat général pour les classes cycliquement closes, et détaillons la situation où la classe de permutations est définie par motifs exclus, avec des motifs de taille $3$, ou bien à la fois des motifs de taille $3$ et de taille $4$.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Gaku Liu

International audience In this extended abstract we consider mixed volumes of combinations of hypersimplices. These numbers, called mixed Eulerian numbers, were first considered by A. Postnikov and were shown to satisfy many properties related to Eulerian numbers, Catalan numbers, binomial coefficients, etc. We give a general combinatorial interpretation for mixed Eulerian numbers and prove the above properties combinatorially. In particular, we show that each mixed Eulerian number enumerates a certain set of permutations in $S_n$. We also prove several new properties of mixed Eulerian numbers using our methods. Finally, we consider a type $B$ analogue of mixed Eulerian numbers and give an analogous combinatorial interpretation for these numbers. Dans ce résumé étendu nous considérons les volumes mixtes de combinaisons d’hyper-simplexes. Ces nombres, appelés les nombres Eulériens mixtes, ont été pour la première fois étudiés par A. Postnikov, et il a été montré qu’ils satisfont à de nombreuses propriétés reliées aux nombres Eulériens, au nombres de Catalan, aux coefficients binomiaux, etc. Nous donnons une interprétation combinatoire générale des nombres Eulériens mixtes, et nous prouvons combinatoirement les propriétés mentionnées ci-dessus. En particulier, nous montrons que chaque nombre Eulérien mixte compte les éléments d’un certain sous-ensemble de l’ensemble des permutations $S_n$. Nous établissons également plusieurs nouvelles propriétés des nombres Eulériens mixtes grâce à notre méthode. Pour finir, nous introduisons une généralisation en type $B$ des nombres Eulériens mixtes, et nous en donnons une interprétation combinatoire analogue.



1999 ◽  
Vol Vol. 3 no. 4 ◽  
Author(s):  
Aaron Robertson

International audience We prove that the number of permutations which avoid 132-patterns and have exactly one 123-pattern, equals $(n-2)2^{n-3}$, for $n \ge 3$. We then give a bijection onto the set of permutations which avoid 123-patterns and have exactly one 132-pattern. Finally, we show that the number of permutations which contain exactly one 123-pattern and exactly one 132-pattern is $(n-3)(n-4)2^{n-5}$, for $n \ge 5$.



1997 ◽  
Vol Volume 20 ◽  
Author(s):  
K Ramachandra

International audience In this paper, an alternative and simpler proof of the main general result of Part XVIII is given. The proof is based on the classical van der Corput lemma and Montgomery-Vaughan inequality, and except for these tools the arguments are self-contained.



2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Mathilde Bouvel ◽  
Marni Mishna ◽  
Cyril Nicaud

International audience After extending classical results on simple varieties of trees to trees counted by their number of leaves, we describe a filtration of the set of permutations based on their strong interval trees. For each subclass we provide asymptotic formulas for number of trees (by leaves), average number of nodes of fixed arity, average subtree size sum, and average number of internal nodes. The filtration is motivated by genome comparison of related species. Nous commençons par étendre les résultats classiques sur les variétés simples d'arbres aux arbres comptés selon leur nombre de feuilles, puis nous décrivons une filtration de l'ensemble des permutations qui repose sur leurs arbres des intervalles communs. Pour toute sous-classe, nous donnons des formules asymptotiques pour le nombre d'arbres (comptés selon les feuilles), le nombre moyen de nœuds d'arité fixée, la moyenne de la somme des tailles des sous-arbres, et le nombre moyen de nœuds internes. Cette filtration est motivée par des problématiques de comparaison de génomes.



2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Svetlana Poznanović

International audience We prove that the Mahonian-Stirling pairs of permutation statistics $(sor, cyc)$ and $(∈v , \mathrm{rlmin})$ are equidistributed on the set of permutations that correspond to arrangements of $n$ non-atacking rooks on a fixed Ferrers board with $n$ rows and $n$ columns. The proofs are combinatorial and use bijections between matchings and Dyck paths and a new statistic, sorting index for matchings, that we define. We also prove a refinement of this equidistribution result which describes the minimal elements in the permutation cycles and the right-to-left minimum letters.



2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Sergi Elizalde

International audience A permutation $\pi$ is realized by the shift on $N$ symbols if there is an infinite word on an $N$-letter alphabet whose successive left shifts by one position are lexicographically in the same relative order as $\pi$. The set of realized permutations is closed under consecutive pattern containment. Permutations that cannot be realized are called forbidden patterns. It was shown in [J.M. Amigó, S. Elizalde and M. Kennel, $\textit{J. Combin. Theory Ser. A}$ 115 (2008), 485―504] that the shortest forbidden patterns of the shift on $N$ symbols have length $N+2$. In this paper we give a characterization of the set of permutations that are realized by the shift on $N$ symbols, and we enumerate them with respect to their length. Une permutation $\pi$ est réalisée par le $\textit{shift}$ avec $N$ symboles s'il y a un mot infini sur un alphabet de $N$ lettres dont les déplacements successifs d'une position à gauche sont lexicographiquement dans le même ordre relatif que $\pi$. Les permutations qui ne sont pas réalisées s'appellent des motifs interdits. On sait [J.M. Amigó, S. Elizalde and M. Kennel, $\textit{J. Combin. Theory Ser. A}$ 115 (2008), 485―504] que les motifs interdits les plus courts du $\textit{shift}$ avec $N$ symboles ont longueur $N+2$. Dans cet article on donne une caractérisation des permutations réalisées par le $\textit{shift}$ avec $N$ symboles, et on les dénombre selon leur longueur.



2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Michael Albert ◽  
Mathilde Bouvel

International audience We study sorting operators $\textrm{A}$ on permutations that are obtained composing Knuth's stack sorting operator \textrmS and the reverse operator $\textrm{R}$, as many times as desired. For any such operator $\textrm{A}$, we provide a bijection between the set of permutations sorted by $\textrm{S} \circ \textrm{A}$ and the set of those sorted by $\textrm{S} \circ \textrm{R} \circ \textrm{A}$, proving that these sets are enumerated by the same sequence, but also that many classical permutation statistics are equidistributed across these two sets. The description of this family of bijections is based on an apparently novel bijection between the set of permutations avoiding the pattern $231$ and the set of those avoiding $132$ which preserves many permutation statistics. We also present other properties of this bijection, in particular for finding families of Wilf-equivalent permutation classes.



2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Adeline Pierrot ◽  
Dominique Rossin ◽  
Julian West

International audience We continue a study of the equivalence class induced on $S_n$ when one is permitted to replace a consecutive set of elements in a permutation with the same elements in a different order. For each possible set of allowed replacements, we characterise and/or enumerate the set of permutations reachable from the identity. In some cases we also count the number of equivalence classes. Nous étudions dans cet article les classes d'équivalence sur les permutations obtenues en remplaçant un ensemble consécutif de valeurs par ces même valeurs mais dans un ordre différent. Nous étudions l'ensemble des remplacements possibles de longueur 3 et pour chacun d'entre eux caractérisons et énumérons les permutations de la classe de l'identité. Pour certains ensembles, nous calculons de même le nombre de classes d'équivalence.



2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Miles Eli Jones ◽  
Jeffrey Remmel

International audience In this paper, we develop a new method to compute generating functions of the form $NM_τ (t,x,y) = \sum\limits_{n ≥0} {\frac{t^n} {n!}}∑_{σ ∈\mathcal{lNM_{n}(τ )}} x^{LRMin(σ)} y^{1+des(σ )}$ where $τ$ is a permutation that starts with $1, \mathcal{NM_n}(τ )$ is the set of permutations in the symmetric group $S_n$ with no $τ$ -matches, and for any permutation $σ ∈S_n$, $LRMin(σ )$ is the number of left-to-right minima of $σ$ and $des(σ )$ is the number of descents of $σ$ . Our method does not compute $NM_τ (t,x,y)$ directly, but assumes that $NM_τ (t,x,y) = \frac{1}{/ (U_τ (t,y))^x}$ where $U_τ (t,y) = \sum_{n ≥0} U_τ ,n(y) \frac{t^n}{ n!}$ so that $U_τ (t,y) = \frac{1}{ NM_τ (t,1,y)}$. We then use the so-called homomorphism method and the combinatorial interpretation of $NM_τ (t,1,y)$ to develop recursions for the coefficient of $U_τ (t,y)$. Dans cet article, nous développons une nouvelle méthode pour calculer les fonctions génératrices de la forme $NM_τ (t,x,y) = \sum\limits_{n ≥0} {\frac{t^n} {n!}}∑_{σ ∈\mathcal{lNM_{n}(τ )}} x^{LRMin(σ)} y^{1+des(σ )}$ où τ est une permutation, $\mathcal{NM_n}(τ )$ est l'ensemble des permutations dans le groupe symétrique $S_n$ sans $τ$-matches, et pour toute permutation $σ ∈S_n$, $LRMin(σ )$ est le nombre de minima de gauche à droite de $σ$ et $des(σ )$ est le nombre de descentes de $σ$ . Notre méthode ne calcule pas $NM_τ (t,x,y)$ directement, mais suppose que $NM_τ (t,x,y) = \frac{1}{/ (U_τ (t,y))^x}$ où $U_τ (t,y) = \sum_{n ≥0} U_τ ,n(y) \frac{t^n}{ n!}$ de sorte que $U_τ (t,y) = \frac{1}{ NM_τ (t,1,y)}$. Nous utilisons ensuite la méthode dite "de l'homomorphisme'' et l'interprétation combinatoire de $NM_τ (t,1,y)$ pour développer des récursions sur le coefficient de $U_τ (t,y)$.



2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Niklas Eriksen

International audience The median problem seeks a permutation whose total distance to a given set of permutations (the base set) is minimal. This is an important problem in comparative genomics and has been studied for several distance measures such as reversals. The transposition distance is less relevant biologically, but it has been shown that it behaves similarly to the most important biological distances, and can thus give important information on their properties. We have derived an algorithm which solves the transposition median problem, giving all transposition medians (the median cloud). We show that our algorithm can be modified to accept median clouds as elements in the base set and briefly discuss the new concept of median iterates (medians of medians) and limit medians, that is the limit of this iterate. Le problème de la médiane est de trouver une permutation dont la distance totale à un ensemble donné de permutations (l´ensemble de base) est minimale. C'est un problème important en génomique comparative et il a été étudié pour certaines mesures de distance. La distance de transposition n'est pas directement liée à  la biologie, mais il a été démontré que son comportement est similaire à celui des distances biologiques essentielles, et elle peut donc donner des indications sur leurs propriétés. Nous construisons un algorithme qui résout le problème de la médiane pour la transposition, et donne toutes les transpositions médianes (le nuage des médianes). Nous démontrons que notre algorithme peut être modifié pour admettre des nuages de médianes comme éléments de l´ensemble de base et introduisons le concept de médianes itérées (médianes de médianes) et de médianes limites, c-à-d de limites de ces itérations.



Sign in / Sign up

Export Citation Format

Share Document