Permutations Containing and Avoiding $\textit{123}$ and $\textit{132}$ Patterns
1999 ◽
Vol Vol. 3 no. 4
◽
International audience We prove that the number of permutations which avoid 132-patterns and have exactly one 123-pattern, equals $(n-2)2^{n-3}$, for $n \ge 3$. We then give a bijection onto the set of permutations which avoid 123-patterns and have exactly one 132-pattern. Finally, we show that the number of permutations which contain exactly one 123-pattern and exactly one 132-pattern is $(n-3)(n-4)2^{n-5}$, for $n \ge 5$.
2015 ◽
Vol DMTCS Proceedings, 27th...
(Proceedings)
◽
2009 ◽
Vol DMTCS Proceedings vol. AK,...
(Proceedings)
◽
2013 ◽
Vol DMTCS Proceedings vol. AS,...
(Proceedings)
◽
2013 ◽
Vol DMTCS Proceedings vol. AS,...
(Proceedings)
◽
2009 ◽
Vol DMTCS Proceedings vol. AK,...
(Proceedings)
◽
Keyword(s):
2013 ◽
Vol DMTCS Proceedings vol. AS,...
(Proceedings)
◽
2011 ◽
Vol DMTCS Proceedings vol. AO,...
(Proceedings)
◽
Keyword(s):
2011 ◽
Vol DMTCS Proceedings vol. AO,...
(Proceedings)
◽
2009 ◽
Vol DMTCS Proceedings vol. AK,...
(Proceedings)
◽
Keyword(s):
2003 ◽
Vol DMTCS Proceedings vol. AC,...
(Proceedings)
◽
Keyword(s):