scholarly journals Cycles and sorting index for matchings and restricted permutations

2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Svetlana Poznanović

International audience We prove that the Mahonian-Stirling pairs of permutation statistics $(sor, cyc)$ and $(∈v , \mathrm{rlmin})$ are equidistributed on the set of permutations that correspond to arrangements of $n$ non-atacking rooks on a fixed Ferrers board with $n$ rows and $n$ columns. The proofs are combinatorial and use bijections between matchings and Dyck paths and a new statistic, sorting index for matchings, that we define. We also prove a refinement of this equidistribution result which describes the minimal elements in the permutation cycles and the right-to-left minimum letters.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Michael Albert ◽  
Mathilde Bouvel

International audience We study sorting operators $\textrm{A}$ on permutations that are obtained composing Knuth's stack sorting operator \textrmS and the reverse operator $\textrm{R}$, as many times as desired. For any such operator $\textrm{A}$, we provide a bijection between the set of permutations sorted by $\textrm{S} \circ \textrm{A}$ and the set of those sorted by $\textrm{S} \circ \textrm{R} \circ \textrm{A}$, proving that these sets are enumerated by the same sequence, but also that many classical permutation statistics are equidistributed across these two sets. The description of this family of bijections is based on an apparently novel bijection between the set of permutations avoiding the pattern $231$ and the set of those avoiding $132$ which preserves many permutation statistics. We also present other properties of this bijection, in particular for finding families of Wilf-equivalent permutation classes.



2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Michel Nguyên Thê

International audience This paper gives a survey of the limit distributions of the areas of different types of random walks, namely Dyck paths, bilateral Dyck paths, meanders, and Bernoulli random walks, using the technology of generating functions only.



2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Gaku Liu

International audience In this extended abstract we consider mixed volumes of combinations of hypersimplices. These numbers, called mixed Eulerian numbers, were first considered by A. Postnikov and were shown to satisfy many properties related to Eulerian numbers, Catalan numbers, binomial coefficients, etc. We give a general combinatorial interpretation for mixed Eulerian numbers and prove the above properties combinatorially. In particular, we show that each mixed Eulerian number enumerates a certain set of permutations in $S_n$. We also prove several new properties of mixed Eulerian numbers using our methods. Finally, we consider a type $B$ analogue of mixed Eulerian numbers and give an analogous combinatorial interpretation for these numbers. Dans ce résumé étendu nous considérons les volumes mixtes de combinaisons d’hyper-simplexes. Ces nombres, appelés les nombres Eulériens mixtes, ont été pour la première fois étudiés par A. Postnikov, et il a été montré qu’ils satisfont à de nombreuses propriétés reliées aux nombres Eulériens, au nombres de Catalan, aux coefficients binomiaux, etc. Nous donnons une interprétation combinatoire générale des nombres Eulériens mixtes, et nous prouvons combinatoirement les propriétés mentionnées ci-dessus. En particulier, nous montrons que chaque nombre Eulérien mixte compte les éléments d’un certain sous-ensemble de l’ensemble des permutations $S_n$. Nous établissons également plusieurs nouvelles propriétés des nombres Eulériens mixtes grâce à notre méthode. Pour finir, nous introduisons une généralisation en type $B$ des nombres Eulériens mixtes, et nous en donnons une interprétation combinatoire analogue.



2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Sergey Kitaev ◽  
Jeffrey Remmel

International audience A poset is said to be (2+2)-free if it does not contain an induced subposet that is isomorphic to 2+2, the union of two disjoint 2-element chains. In a recent paper, Bousquet-Mélou et al. found, using so called ascent sequences, the generating function for the number of (2+2)-free posets: $P(t)=∑_n≥ 0 ∏_i=1^n ( 1-(1-t)^i)$. We extend this result by finding the generating function for (2+2)-free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. We also show that in a special case when only minimal elements are of interest, our rather involved generating function can be rewritten in the form $P(t,z)=∑_n,k ≥0 p_n,k t^n z^k = 1+ ∑_n ≥0\frac{zt}{(1-zt)^n+1}∏_i=1^n (1-(1-t)^i)$ where $p_n,k$ equals the number of (2+2)-free posets of size $n$ with $k$ minimal elements. Un poset sera dit (2+2)-libre s'il ne contient aucun sous-poset isomorphe à 2+2, l'union disjointe de deux chaînes à deux éléments. Dans un article récent, Bousquet-Mélou et al. ont trouvé, à l'aide de "suites de montées'', la fonction génératrice des nombres de posets (2+2)-libres: c'est $P(t)=∑_n≥ 0 ∏_i=1^n ( 1-(1-t)^i)$. Nous étendons ce résultat en trouvant la fonction génératrice des posets (\textrm2+2)-libres rendant compte de quatre statistiques, dont le nombre d'éléments minimaux du poset. Nous montrons aussi que lorsqu'on ne s'intéresse qu'au nombre d'éléments minimaux, notre fonction génératrice assez compliquée peut être simplifiée en$P(t,z)=∑_n,k ≥0 p_n,k t^n z^k = 1+ ∑_n ≥0\frac{zt}{(1-zt)^n+1}∏_i=1^n (1-(1-t)^i)$, où $p_n,k$ est le nombre de posets (2+2)-libres de taille $n$ avec $k$ éléments minimaux.



1999 ◽  
Vol Vol. 3 no. 4 ◽  
Author(s):  
Aaron Robertson

International audience We prove that the number of permutations which avoid 132-patterns and have exactly one 123-pattern, equals $(n-2)2^{n-3}$, for $n \ge 3$. We then give a bijection onto the set of permutations which avoid 123-patterns and have exactly one 132-pattern. Finally, we show that the number of permutations which contain exactly one 123-pattern and exactly one 132-pattern is $(n-3)(n-4)2^{n-5}$, for $n \ge 5$.



2011 ◽  
Vol Vol. 13 no. 1 (Combinatorics) ◽  
Author(s):  
Nicholas A. Loehr ◽  
Elizabeth Niese

Combinatorics International audience For each integer partition mu, let e (F) over tilde (mu)(q; t) be the coefficient of x(1) ... x(n) in the modified Macdonald polynomial (H) over tilde (mu). The polynomial (F) over tilde (mu)(q; t) can be regarded as the Hilbert series of a certain doubly-graded S(n)-module M(mu), or as a q, t-analogue of n! based on permutation statistics inv(mu) and maj(mu) that generalize the classical inversion and major index statistics. This paper uses the combinatorial definition of (F) over tilde (mu) to prove some recursions characterizing these polynomials, and other related ones, when mu is a two-column shape. Our result provides a complement to recent work of Garsia and Haglund, who proved a different recursion for two-column shapes by representation-theoretical methods. For all mu, we show that e (F) over tilde (mu)(q, t) is divisible by certain q-factorials and t-factorials depending on mu. We use our recursion and related tools to explain some of these factors bijectively. Finally, we present fermionic formulas that express e (F) over tilde ((2n)) (q, t) as a sum of q, t-analogues of n!2(n) indexed by perfect matchings.



10.37236/299 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Jeffrey Remmel ◽  
Manda Riehl

A large number of generating functions for permutation statistics can be obtained by applying homomorphisms to simple symmetric function identities. In particular, a large number of generating functions involving the number of descents of a permutation $\sigma$, $des(\sigma)$, arise in this way. For any given finite set $S$ of positive integers, we develop a method to produce similar generating functions for the set of permutations of the symmetric group $S_n$ whose descent set contains $S$. Our method will be to apply certain homomorphisms to symmetric function identities involving ribbon Schur functions.



2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Samuele Giraudo

International audience We introduce a functorial construction which, from a monoid, produces a set-operad. We obtain new (symmetric or not) operads as suboperads or quotients of the operad obtained from the additive monoid. These involve various familiar combinatorial objects: parking functions, packed words, planar rooted trees, generalized Dyck paths, Schröder trees, Motzkin paths, integer compositions, directed animals, etc. We also retrieve some known operads: the magmatic operad, the commutative associative operad, and the diassociative operad.



2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Velleda Baldoni ◽  
Nicole Berline ◽  
Brandon Dutra ◽  
Matthias Köppe ◽  
Michele Vergne ◽  
...  

International audience For a given sequence $\alpha = [\alpha_1,\alpha_2,\ldots , \alpha_N, \alpha_{N+1}]$ of $N+1$ positive integers, we consider the combinatorial function $E(\alpha)(t)$ that counts the nonnegative integer solutions of the equation $\alpha_1x_1+\alpha_2 x_2+ \ldots+ \alpha_Nx_N+ \alpha_{N+1}x_{N+1}=t$, where the right-hand side $t$ is a varying nonnegative integer. It is well-known that $E(\alpha)(t)$ is a quasipolynomial function of $t$ of degree $N$. In combinatorial number theory this function is known as the $\textit{denumerant}$. Our main result is a new algorithm that, for every fixed number $k$, computes in polynomial time the highest $k+1$ coefficients of the quasi-polynomial $E(\alpha)(t)$ as step polynomials of $t$. Our algorithm is a consequence of a nice poset structure on the poles of the associated rational generating function for $E(\alpha)(t)$ and the geometric reinterpretation of some rational generating functions in terms of lattice points in polyhedral cones. Experiments using a $\texttt{MAPLE}$ implementation will be posted separately. Considérons une liste $\alpha = [\alpha_1,\alpha_2,\ldots , \alpha_N, \alpha_{N+1}]$ de $N+1$ entiers positifs. Le dénumérant $E(\alpha)(t)$ est lafonction qui compte le nombre de solutions en entiers positifs ou nuls de l’équation $\sum^{N+1}_{i=1}x_i\alpha_i=t$, où $t$ varie dans les entiers positifs ou nuls. Il est bien connu que cette fonction est une fonction quasi-polynomiale de $t$, de degré $N$. Nous donnons un nouvel algorithme qui calcule, pour chaque entier fixé $k$ (mais $N$ n’est pas fixé, les $k+1$ plus hauts coefficients du quasi-polynôme $E(\alpha)(t)$ en termes de fonctions en dents de scie. Notre algorithme utilise la structure d’ensemble partiellement ordonné des pôles de la fonction génératrice de $E(\alpha)(t)$. Les $k+1$ plus hauts coefficients se calculent à l’aide de fonctions génératrices de points entiers dans des cônes polyèdraux de dimension inférieure ou égale à $k$.



2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Robin Langer

International audience Cylindric plane partitions may be thought of as a natural generalization of reverse plane partitions. A generating series for the enumeration of cylindric plane partitions was recently given by Borodin. As in the reverse plane partition case, the right hand side of this identity admits a simple factorization form in terms of the "hook lengths'' of the individual boxes in the underlying shape. The first result of this paper is a new bijective proof of Borodin's identity which makes use of Fomin's growth diagram framework for generalized RSK correspondences. The second result of this paper is a $(q,t)$-analog of Borodin's identity which extends previous work by Okada in the reverse plane partition case. The third result of this paper is an explicit combinatorial interpretation of the Macdonald weight occurring in the $(q,t)$-analog in terms of the non-intersecting lattice path model for cylindric plane partitions. Les partitions planes cylindriques sont une généralisation naturelle des partitions planes renversées. Une série génératrice pour énumération des partitions planes cylindriques a été donnée récemment par Borodin. Comme dans le cas des partitions planes renversées, la partie droite de cette identité peut être factoriser en terme de "longueur d’équerres'' des carrés dans la forme sous-jacente. Le premier résultat de cet article est une nouvelle preuve bijective de l'identité de Borodin qui utilise le cadre de "diagramme de croissance'' de Fomin pour la correspondance de RSK généralisée. Le deuxième résultat de cette article est une $(q,t)$-déformation d'identité de Borodin qui généralise un résultat de Okada dans le cas des partitions planes renversées. Le troisième résultat de cet article est une formule combinatoire explicite pour le poids de Macdonald qui utilise le modèle des chemins non-intersectant pour les partitions planes cylindriques.



Sign in / Sign up

Export Citation Format

Share Document