scholarly journals Fully Packed Loop configurations in a triangle and Littlewood Richardson coefficients

2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Philippe Nadeau

International audience We are interested in Fully Packed Loops in a triangle (TFPLs), as introduced by Caselli at al. and studied by Thapper. We show that for Fully Packed Loops with a fixed link pattern (refined FPL), there exist linear recurrence relations with coefficients computed from TFPL configurations. We then give constraints and enumeration results for certain classes of TFPL configurations. For special boundary conditions, we show that TFPLs are counted by the famous Littlewood Richardson coefficients. Nous nous intéressons aux configurations de "Fully Packed Loops'' dans un triangle (TFPL), introduites par Caselli et al. et étudiées par Thapper. Nous montrons que pour les Fully Packed Loops avec un couplage donné, il existe des relations de récurrence linéaires dont les coefficients sont calculés à partir de certains TFPLs. Nous donnons ensuite des contraintes et des résultats énumératifs pour certaines familles de TFPLs. Pour certaines conditions au bord, nous montrons que le nombre de TFPL est donné par les coefficients de Littlewood Richardson.

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Sabine Beil

International audience Triangular fully packed loop configurations (TFPLs) came up in the study of fully packed loop configurations on a square (FPLs) corresponding to link patterns with a large number of nested arches. To a TFPL is assigned a triple $(u,v;w)$ of $01$-words encoding its boundary conditions. A necessary condition for the boundary $(u,v;w)$ of a TFPL is $\lvert \lambda(u) \rvert +\lvert \lambda(v) \rvert \leq \lvert \lambda(w) \rvert$, where $\lambda(u)$ denotes the Young diagram associated with the $01$-word $u$. Wieland gyration, on the other hand, was invented to show the rotational invariance of the numbers $A_\pi$ of FPLs corresponding to a given link pattern $\pi$. Later, Wieland drift was defined as the natural adaption of Wieland gyration to TFPLs. The main contribution of this article is a linear expression for the number of TFPLs with boundary $(u,v;w)$ where $\lvert \lambda (w) \rvert - \lvert\lambda (u) \rvert - \lvert \lambda (v)\rvert \leq 2$ in terms of numbers of stable TFPLs that is TFPLs invariant under Wieland drift. These stable TFPLs have boundary $(u^{+},v^{+};w)$ for words $u^{+}$ and $v^{+}$ such that $\lambda (u) \subseteq \lambda (u^{+})$ and $\lambda (v) \subseteq \lambda (v^{+})$. Les configurations de boucles compactes triangulaires (”triangular fully packed loop configurations”, ou TFPLs) sont apparues dans l’étude des configurations de boucles compactes dans un carré (FPLs) correspondant à des motifs de liaison avec un grand nombre d’arcs imbriqués. À chaque TPFL on associe un triplet $(u,v;w)$ de mots sur {0,1}, qui encode ses conditions aux bords. Une condition nécessaire pour le bord $(u,v;w)$ d’un TFPL est $\lvert \lambda(u) \rvert +\lvert \lambda(v) \rvert \leq \lvert \lambda(w) \rvert$, où $\lambda(u)$ désigne le diagramme de Young associé au mot $u$. D’un autre côté, la giration de Wieland a été inventée pour montrer l’invariance par rotation des nombres $A_\pi$ de FPLs correspondant à un motif de liaison donné $\pi$. Plus tard, la déviation de Wieland a été définie pour adapter de manière naturelle la giration de Wieland aux TFPLs. La contribution principale de cet article est une expression linéaire pour le nombre de TFPLs de bord $(u,v;w)$, où $\lvert \lambda (w) \rvert - \lvert\lambda (u) \rvert - \lvert \lambda (v)\rvert \leq 2$, en fonction des nombres de TFPLs stables, <i>i.e</i>., les TFPLs invariants par déviation de Wieland. Ces TFPLs stables ont pour bord $(u^{+},v^{+};w)$, avec $u^{+}$ et $v^{+}$ des mots tels que $\lambda (u) \subseteq \lambda (u^{+})$ et $\lambda (v) \subseteq \lambda (v^{+})$.


1998 ◽  
Vol 65 (2) ◽  
pp. 476-478
Author(s):  
N. Morozov ◽  
I. Sourovtsova

The study of the problem of wave propagation in elastic wedge meets considerable difficulties, which are intensified by the presence of waves of two types that interact with each other through boundary conditions. However, some special surface loading permits separation of the potentials in the boundary conditions, but even in this case the problem cannot be simply reduced to two acoustic ones. The reason for this is that the edge condition cannot be satisfied if the disturbances are limited to a single type (longitudinal or shear). In spite of this the problem, such a special boundary loading nevertheless turns out to be very similar to the acoustic one, which makes it possible to find a closed analytical solution by means of the modified Kostrov method (Kostrov, 1966) and the idea of extension of operators. A similar approach is used for the study of the general problem of loading of the body with several angles.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Jean-Gabriel Luque

International audience We investigate the homogeneous symmetric Macdonald polynomials $P_{\lambda} (\mathbb{X} ;q,t)$ for the specialization $t=q^k$. We show an identity relying the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$ and $P_{\lambda} (\frac{1-q}{1-q^k}\mathbb{X} ;q,q^k)$. As a consequence, we describe an operator whose eigenvalues characterize the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$. Nous nous intéressons aux propriétés des polynômes de Macdonald symétriques $P_{\lambda} (\mathbb{X} ;q,t)$ pour la spécialisation $t=q^k$. En particulier nous montrons une égalité reliant les polynômes $P_{\lambda} (\mathbb{X} ;q,q^k)$ et $P_{\lambda} (\frac{1-q}{1-q^k}\mathbb{X} ;q,q^k)$. Nous en déduisons la description d'un opérateur dont les valeurs propres caractérisent les polynômes $P_{\lambda} (\mathbb{X} ;q,q^k)$.


2021 ◽  
Vol 38 (1) ◽  
pp. 149-158
Author(s):  
MIRCEA MERCA ◽  

In 1963, Peter Hagis, Jr. provided a Hardy-Ramanujan-Rademacher-type convergent series that can be used to compute an isolated value of the partition function $Q(n)$ which counts partitions of $n$ into distinct parts. Computing $Q(n)$ by this method requires arithmetic with very high-precision approximate real numbers and it is complicated. In this paper, we investigate new connections between partitions into distinct parts and overpartitions and obtain a surprising recurrence relation for the number of partitions of $n$ into distinct parts. By particularization of this relation, we derive two different linear recurrence relations for the partition function $Q(n)$. One of them involves the thrice square numbers and the other involves the generalized octagonal numbers. The recurrence relation involving the thrice square numbers provide a simple and fast computation of the value of $Q(n)$. This method uses only (large) integer arithmetic and it is simpler to program. Infinite families of linear inequalities involving partitions into distinct parts and overpartitions are introduced in this context.


2017 ◽  
Vol 32 (02n03) ◽  
pp. 1750006 ◽  
Author(s):  
Satoshi Ohya

It has long been known that two-point functions of conformal field theory (CFT) are nothing but the integral kernels of intertwining operators for two equivalent representations of conformal algebra. Such intertwining operators are known to fulfill some operator identities — the intertwining relations — in the representation space of conformal algebra. Meanwhile, it has been known that the S-matrix operator in scattering theory is nothing but the intertwining operator between the Hilbert spaces of in- and out-particles. Inspired by this algebraic resemblance, in this paper, we develop a simple Lie-algebraic approach to momentum-space two-point functions of thermal CFT living on the hyperbolic space–time [Formula: see text] by exploiting the idea of Kerimov’s intertwining operator approach to exact S-matrix. We show that in thermal CFT on [Formula: see text], the intertwining relations reduce to certain linear recurrence relations for two-point functions in the complex momentum space. By solving these recurrence relations, we obtain the momentum-space representations of advanced and retarded two-point functions as well as positive- and negative-frequency two-point Wightman functions for a scalar primary operator in arbitrary space–time dimension [Formula: see text].


1957 ◽  
Vol 41 (338) ◽  
pp. 285-287
Author(s):  
R. C. Lyness

Sign in / Sign up

Export Citation Format

Share Document