scholarly journals A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants (condensed version)

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
J. Haglund

International audience A special case of Haiman's identity [Invent. Math. 149 (2002), pp. 371–407] for the character of the quotient ring of diagonal coinvariants under the diagonal action of the symmetric group yields a formula for the bigraded Hilbert series as a sum of rational functions in $q,t$. In this paper we show how a summation identity of Garsia and Zabrocki for Macdonald polynomial Pieri coefficients can be used to transform Haiman's formula for the Hilbert series into an explicit polynomial in $q,t$ with integer coefficients. We also provide an equivalent formula for the Hilbert series as the constant term in a multivariate Laurent series. Un cas spécial de l'identité de Haiman [Invent. Math. \textbf149 (2002), pp. 371–407] pour le caractère de l'anneau quotient des coinvariants diagonaux sous l'action du groupe symétrique fournit une formule pour la série de Hilbert bigraduée comme somme de fonctions rationnelles en q,t. Dans cet article nous montrons comment une identité de sommation de Garsia et Zabrocki pour les coefficients de Pieri des polynômes de Macdonald peut être utilisée pour transformer la formule de Haiman pour la série de Hilbert en un polynôme explicite en q,t à coefficients entiers. Nous présentons également une formule équivalente pour la série de Hilbert comme terme constant d'une série de Laurent multivariée.

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Maciej Dolega ◽  
Valentin Féray

International audience Goulden and Jackson (1996) introduced, using Jack symmetric functions, some multivariate generating series ψ(x, y, z; t, 1 + β) that might be interpreted as a continuous deformation of the rooted hypermap generating series. They made the following conjecture: coefficients of ψ(x, y, z; t, 1+β) are polynomials in β with nonnegative integer coefficients. We prove partially this conjecture, nowadays called b-conjecture, by showing that coefficients of ψ(x, y, z; t, 1 + β) are polynomials in β with rational coefficients. Until now, it was only known that they are rational functions of β. A key step of the proof is a strong factorization property of Jack polynomials when α → 0 that may be of independent interest.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Daniel Birmajer ◽  
Juan B. Gil ◽  
Michael D. Weiner

International audience Given an odd prime p, we give an explicit factorization over the ring of formal power series with integer coefficients for certain reducible polynomials whose constant term is of the form $p^w$ with $w>1$. Our formulas are given in terms of partial Bell polynomials and rely on the inversion formula of Lagrange.


2013 ◽  
Vol Vol. 15 no. 2 (Combinatorics) ◽  
Author(s):  
Adrien Boussicault

Combinatorics International audience We consider the family of rational functions ψw= ∏( xwi - xwi+1 )-1 indexed by words with no repetition. We study the combinatorics of the sums ΨP of the functions ψw when w describes the linear extensions of a given poset P. In particular, we point out the connexions between some transformations on posets and elementary operations on the fraction ΨP. We prove that the denominator of ΨP has a closed expression in terms of the Hasse diagram of P, and we compute its numerator in some special cases. We show that the computation of ΨP can be reduced to the case of bipartite posets. Finally, we compute the numerators associated to some special bipartite graphs as Schubert polynomials.


2006 ◽  
Vol DMTCS Proceedings vol. AG,... (Proceedings) ◽  
Author(s):  
Alexander Gnedin

International audience For a class of random partitions of an infinite set a de Finetti-type representation is derived, and in one special case a central limit theorem for the number of blocks is shown.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Lenny Tevlin

International audience This paper contains two results. First, I propose a $q$-generalization of a certain sequence of positive integers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These $q$-integers are palindromic polynomials in $q$ with positive integer coefficients. The positivity depends on the positivity of a certain difference of products of $q$-binomial coefficients.To this end, I introduce a new inversion/major statistics on lattice walks. The difference in $q$-binomial coefficients is then seen as a generating function of weighted walks that remain in the upper half-plan. Cet document contient deux résultats. Tout d’abord, je vous propose un $q$-generalization d’une certaine séquence de nombres entiers positifs, liés à nombres de Catalan, introduites par Zeilberger (Lassalle, 2010). Ces $q$-integers sont des polynômes palindromiques à $q$ à coefficients entiers positifs. La positivité dépend de la positivité d’une certaine différence de produits de $q$-coefficients binomial.Pour ce faire, je vous présente une nouvelle inversion/major index sur les chemins du réseau. La différence de $q$-binomial coefficients est alors considérée comme une fonction de génération de trajets pondérés qui restent dans le demi-plan supérieur.


2011 ◽  
Vol 18 (spec01) ◽  
pp. 1017-1028 ◽  
Author(s):  
Zaffar Iqbal

Deligne proved that the Hilbert series of all Artin monoids are rational functions. We give an algorithm to compute the Hilbert series of the braid monoids [Formula: see text]. We also show that the Hilbert series of the positive words in [Formula: see text] with a given prefix are rational functions.


1960 ◽  
Vol 3 (2) ◽  
pp. 153-156
Author(s):  
Z. A. Melzak

The tenth problem on Hilbert's well known list [1] is the following.(H 10) For an arbitrary polynomial P = P(x1,x2,…,xn) with integer coefficients to determine whether or not the equation P = 0 has a solution in integers.By 'integers' we always mean 'rational integers'. The problem (H 10) is still unsolved but it appears likely that no decision procedure exists; in this connection see [2]. It will be shown here that (H 10) is equivalent to deciding whether or not every member of a certain given countable sec of rational functions of a single variable x is absolutely monotonie. We recall that f(x) is absolutely monotonie in I if f(x) possesses non-negative derivatives of all orders at every x ∊ I.


2002 ◽  
Vol 30 (12) ◽  
pp. 761-770 ◽  
Author(s):  
Xiao-Xiong Gan ◽  
Nathaniel Knox

Given a formal power seriesg(x)=b0+b1x+b2x2+⋯and a nonunitf(x)=a1x+a2x2+⋯, it is well known that the composition ofgwithf,g(f(x)), is a formal power series. If the formal power seriesfabove is not a nonunit, that is, the constant term offis not zero, the existence of the compositiong(f(x))has been an open problem for many years. The recent development investigated the radius of convergence of a composed formal power series likefabove and obtained some very good results. This note gives a necessary and sufficient condition for the existence of the composition of some formal power series. By means of the theorems established in this note, the existence of the composition of a nonunit formal power series is a special case.


2011 ◽  
Vol 44 (3) ◽  
pp. 520-532 ◽  
Author(s):  
Eli Aljadeff ◽  
Alexei Kanel-Belov

Sign in / Sign up

Export Citation Format

Share Document