scholarly journals Random Boolean expressions

2005 ◽  
Vol DMTCS Proceedings vol. AF,... (Proceedings) ◽  
Author(s):  
Danièle Gardy

International audience We examine how we can define several probability distributions on the set of Boolean functions on a fixed number of variables, starting from a representation of Boolean expressions by trees. Analytic tools give us a systematic way to prove the existence of probability distributions, the main challenge being the actual computation of the distributions. We finally consider the relations between the probability of a Boolean function and its complexity.

2005 ◽  
Vol DMTCS Proceedings vol. AD,... (Proceedings) ◽  
Author(s):  
Danièle Gardy ◽  
Alan Woods

International audience We consider two probability distributions on Boolean functions defined in terms of their representations by $\texttt{and/or}$ trees (or formulas). The relationships between them, and connections with the complexity of the function, are studied. New and improved bounds on these probabilities are given for a wide class of functions, with special attention being paid to the constant function $\textit{True}$ and read-once functions in a fixed number of variables.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Kazuyuki Amano ◽  
Jun Tarui

International audience Let $T_t$ denote the $t$-threshold function on the $n$-cube: $T_t(x) = 1$ if $|\{i : x_i=1\}| \geq t$, and $0$ otherwise. Define the distance between Boolean functions $g$ and $h$, $d(g,h)$, to be the number of points on which $g$ and $h$ disagree. We consider the following extremal problem: Over a monotone Boolean function $g$ on the $n$-cube with $s$ zeros, what is the maximum of $d(g,T_t)$? We show that the following monotone function $p_s$ maximizes the distance: For $x \in \{0,1\}^n$, $p_s(x)=0$ if and only if $N(x) < s$, where $N(x)$ is the integer whose $n$-bit binary representation is $x$. Our result generalizes the previous work for the case $t=\lceil n/2 \rceil$ and $s=2^{n-1}$ by Blum, Burch, and Langford [BBL98-FOCS98], who considered the problem to analyze the behavior of a learning algorithm for monotone Boolean functions, and the previous work for the same $t$ and $s$ by Amano and Maruoka [AM02-ALT02].


2008 ◽  
Vol DMTCS Proceedings vol. AI,... (Proceedings) ◽  
Author(s):  
Jakub Kozik

International audience Let $P_k(f)$ denote the density of and/or trees defining a boolean function $f$ within the set of and/or trees with fixed number of variables $k$. We prove that there exists constant $B_f$ such that $P_k(f) \sim B_f \cdot k^{-L(f)-1}$ when $k \to \infty$, where $L(f)$ denote the complexity of $f$ (i.e. the size of a minimal and/or tree defining $f$). This theorem has been conjectured by Danièle Gardy and Alan Woods together with its counterpart for distribution $\pi$ defined by some critical Galton-Watson process. Methods presented in this paper can be also applied to prove the analogous property for $\pi$.


2011 ◽  
Vol Vol. 13 no. 4 ◽  
Author(s):  
Sourav Chakraborty

special issue in honor of Laci Babai's 60th birthday: Combinatorics, Groups, Algorithms, and Complexity International audience In this paper we construct a cyclically invariant Boolean function whose sensitivity is Theta(n(1/3)). This result answers two previously published questions. Turan (1984) asked if any Boolean function, invariant under some transitive group of permutations, has sensitivity Omega(root n). Kenyon and Kutin (2004) asked whether for a "nice" function the product of 0-sensitivity and 1-sensitivity is Omega(n). Our function answers both questions in the negative. We also prove that for minterm-transitive functions (a natural class of Boolean functions including our example) the sensitivity is Omega(n(1/3)). Hence for this class of functions sensitivity and block sensitivity are polynomially related.


2010 ◽  
Vol DMTCS Proceedings vol. AM,... (Proceedings) ◽  
Author(s):  
Antoine Genitrini ◽  
Bernhard Gittenberger

International audience The Shannon effect states that "almost all'' Boolean functions have a complexity close to the maximal possible for the uniform probability distribution. In this paper we use some probability distributions on functions, induced by random expressions, and prove that this model does not exhibit the Shannon effect.


2017 ◽  
Vol 27 (2) ◽  
Author(s):  
Stanislav V. Smyshlyaev

AbstractThe paper is concerned with relations between the correlation-immunity (stability) and the perfectly balancedness of Boolean functions. It is shown that an arbitrary perfectly balanced Boolean function fails to satisfy a certain property that is weaker than the 1-stability. This result refutes some assertions by Markus Dichtl. On the other hand, we present new results on barriers of perfectly balanced Boolean functions which show that any perfectly balanced function such that the sum of the lengths of barriers is smaller than the length of variables, is 1-stable.


2016 ◽  
Vol 26 (01) ◽  
pp. 1650004 ◽  
Author(s):  
Benny Applebaum ◽  
Dariusz R. Kowalski ◽  
Boaz Patt-Shamir ◽  
Adi Rosén

We consider a message passing model with n nodes, each connected to all other nodes by a link that can deliver a message of B bits in a time unit (typically, B = O(log n)). We assume that each node has an input of size L bits (typically, L = O(n log n)) and the nodes cooperate in order to compute some function (i.e., perform a distributed task). We are interested in the number of rounds required to compute the function. We give two results regarding this model. First, we show that most boolean functions require ‸ L/B ‹ − 1 rounds to compute deterministically, and that even if we consider randomized protocols that are allowed to err, the expected running time remains [Formula: see text] for most boolean function. Second, trying to find explicit functions that require superconstant time, we consider the pointer chasing problem. In this problem, each node i is given an array Ai of length n whose entries are in [n], and the task is to find, for any [Formula: see text], the value of [Formula: see text]. We give a deterministic O(log n/ log log n) round protocol for this function using message size B = O(log n), a slight but non-trivial improvement over the O(log n) bound provided by standard “pointer doubling.” The question of an explicit function (or functionality) that requires super constant number of rounds in this setting remains, however, open.


2020 ◽  
Vol 30 (2) ◽  
pp. 103-116 ◽  
Author(s):  
Kirill A. Popkov

AbstractWe prove that, for n ⩾ 2, any n-place Boolean function may be implemented by a two-pole contact circuit which is irredundant and allows a diagnostic test with length not exceeding n + k(n − 2) under at most k contact breaks. It is shown that with k = k(n) ⩽ 2n−4, for almost all n-place Boolean functions, the least possible length of such a test is at most 2k + 2.


2015 ◽  
pp. 435-452
Author(s):  
Andris Ambainis ◽  
Jozef Gruska ◽  
Shenggen Zheng

It has been proved that almost all n-bit Boolean functions have exact classical query complexity n. However, the situation seemed to be very different when we deal with exact quantum query complexity. In this paper, we prove that almost all n-bit Boolean functions can be computed by an exact quantum algorithm with less than n queries. More exactly, we prove that ANDn is the only n-bit Boolean function, up to isomorphism, that requires n queries.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-13
Author(s):  
Yu Zhou ◽  
Jianyong Hu ◽  
Xudong Miao ◽  
Yu Han ◽  
Fuzhong Zhang

Abstract The notion of the confusion coefficient is a property that attempts to characterize confusion property of cryptographic algorithms against differential power analysis. In this article, we establish a relationship between the confusion coefficient and the autocorrelation function for any Boolean function and give a tight upper bound and a tight lower bound on the confusion coefficient for any (balanced) Boolean function. We also deduce some deep relationships between the sum-of-squares of the confusion coefficient and other cryptographic indicators (the sum-of-squares indicator, hamming weight, algebraic immunity and correlation immunity), respectively. Moreover, we obtain some trade-offs among the sum-of-squares of the confusion coefficient, the signal-to-noise ratio and the redefined transparency order for a Boolean function.


Sign in / Sign up

Export Citation Format

Share Document