scholarly journals Monotone Boolean Functions with s Zeros Farthest from Threshold Functions

2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Kazuyuki Amano ◽  
Jun Tarui

International audience Let $T_t$ denote the $t$-threshold function on the $n$-cube: $T_t(x) = 1$ if $|\{i : x_i=1\}| \geq t$, and $0$ otherwise. Define the distance between Boolean functions $g$ and $h$, $d(g,h)$, to be the number of points on which $g$ and $h$ disagree. We consider the following extremal problem: Over a monotone Boolean function $g$ on the $n$-cube with $s$ zeros, what is the maximum of $d(g,T_t)$? We show that the following monotone function $p_s$ maximizes the distance: For $x \in \{0,1\}^n$, $p_s(x)=0$ if and only if $N(x) < s$, where $N(x)$ is the integer whose $n$-bit binary representation is $x$. Our result generalizes the previous work for the case $t=\lceil n/2 \rceil$ and $s=2^{n-1}$ by Blum, Burch, and Langford [BBL98-FOCS98], who considered the problem to analyze the behavior of a learning algorithm for monotone Boolean functions, and the previous work for the same $t$ and $s$ by Amano and Maruoka [AM02-ALT02].

1992 ◽  
Vol 03 (01) ◽  
pp. 19-30 ◽  
Author(s):  
AKIRA NAMATAME ◽  
YOSHIAKI TSUKAMOTO

We propose a new learning algorithm, structural learning with the complementary coding for concept learning problems. We introduce the new grouping measure that forms the similarity matrix over the training set and show this similarity matrix provides a sufficient condition for the linear separability of the set. Using the sufficient condition one should figure out a suitable composition of linearly separable threshold functions that classify exactly the set of labeled vectors. In the case of the nonlinear separability, the internal representation of connectionist networks, the number of the hidden units and value-space of these units, is pre-determined before learning based on the structure of the similarity matrix. A three-layer neural network is then constructed where each linearly separable threshold function is computed by a linear-threshold unit whose weights are determined by the one-shot learning algorithm that requires a single presentation of the training set. The structural learning algorithm proceeds to capture the connection weights so as to realize the pre-determined internal representation. The pre-structured internal representation, the activation value spaces at the hidden layer, defines intermediate-concepts. The target-concept is then learned as a combination of those intermediate-concepts. The ability to create the pre-structured internal representation based on the grouping measure distinguishes the structural learning from earlier methods such as backpropagation.


1993 ◽  
Vol 3 (4) ◽  
Author(s):  
A.A. Irmatov

AbstractA Boolean function is called a threshold function if its truth domain is a part of the n-cube cut off by some hyperplane. The number of threshold functions of n variables P(2, n) was estimated in [1, 2, 3]. Obtaining the lower bounds is a problem of special difficulty. Using a result of the paper [4], Zuev in [3] showed that for sufficiently large nP(2, n) > 2In the present paper a new proof which gives a more precise lower bound of P(2, n) is proposed, namely, it is proved that for sufficiently large nP(2, n) > 2


2012 ◽  
Vol 29 (2) ◽  
pp. 231-266 ◽  
Author(s):  
Andrew Chesher

I study the partial identifying power of structural single-equation threshold-crossing models for binary responses when explanatory variables may be endogenous. The sharp identified set of threshold functions is derived for the case in which explanatory variables are discrete, and I provide a constructive proof of sharpness. There is special attention to a widely employed semiparametric shape restriction, which requires the threshold-crossing function to be a monotone function of a linear index involving the observable explanatory variables. The restriction brings great computational benefits, allowing calculation of the identified set of index coefficients without calculating the nonparametrically specified threshold function. With the restriction in place, the methods of the paper can be applied to produce identified sets in a class of binary response models with mismeasured explanatory variables.


2011 ◽  
Vol Vol. 13 no. 4 ◽  
Author(s):  
Sourav Chakraborty

special issue in honor of Laci Babai's 60th birthday: Combinatorics, Groups, Algorithms, and Complexity International audience In this paper we construct a cyclically invariant Boolean function whose sensitivity is Theta(n(1/3)). This result answers two previously published questions. Turan (1984) asked if any Boolean function, invariant under some transitive group of permutations, has sensitivity Omega(root n). Kenyon and Kutin (2004) asked whether for a "nice" function the product of 0-sensitivity and 1-sensitivity is Omega(n). Our function answers both questions in the negative. We also prove that for minterm-transitive functions (a natural class of Boolean functions including our example) the sensitivity is Omega(n(1/3)). Hence for this class of functions sensitivity and block sensitivity are polynomially related.


2002 ◽  
Vol 2 (1) ◽  
pp. 23-50 ◽  
Author(s):  
Bernard Beauzamy

An artificial retina is a plane circuit, consisting of a matrix of photocaptors; each has its own memory, consisting in a small number of cells (3 to 5), arranged in parallel planes. The treatment consists in logical operations between planes, plus translations of any plane: they are called “elementary operations” (EO). A retina operator (RO) is a transformation of the image, defined by a specific representation of a Boolean function ofnvariables(nis the number of neighboring cells taken into account). What is the best way to represent an RO by means of EO, considering the strong limitation of memory? For most retina operators, the complexity (i.e., the number of EO needed) is exponential, no matter what representation is used, but, for specific classes, threshold functions and more generally symmetric functions, we obtain a result several orders of magnitude better than previously known ones. It uses a new representation, called “Block Addition of Variables.” For instance, the threshold functionT 25,12(find if at least 12 pixels are at 1 in a square of5×5) required 62 403 599 EO to be performed. With our method, it requires only 38 084 operations, using three memory cells.


2021 ◽  
Vol 31 (3) ◽  
pp. 193-205
Author(s):  
Svetlana N. Selezneva ◽  
Yongqing Liu

Abstract Learning of monotone functions is a well-known problem. Results obtained by V. K. Korobkov and G. Hansel imply that the complexity φM (n) of learning of monotone Boolean functions equals C n ⌊ n / 2 ⌋ $\begin{array}{} \displaystyle C_n^{\lfloor n/2\rfloor} \end{array}$ + C n ⌊ n / 2 ⌋ + 1 $\begin{array}{} \displaystyle C_n^{\lfloor n/2\rfloor+1} \end{array}$ (φM (n) denotes the least number of queries on the value of an unknown monotone function on a given input sufficient to identify an arbitrary n-ary monotone function). In our paper we consider learning of monotone functions in the case when the teacher is allowed to return an incorrect response to at most one query on the value of an unknown function so that it is still possible to correctly identify the function. We show that learning complexity in case of the possibility of a single error is equal to the complexity in the situation when all responses are correct.


2005 ◽  
Vol DMTCS Proceedings vol. AF,... (Proceedings) ◽  
Author(s):  
Danièle Gardy

International audience We examine how we can define several probability distributions on the set of Boolean functions on a fixed number of variables, starting from a representation of Boolean expressions by trees. Analytic tools give us a systematic way to prove the existence of probability distributions, the main challenge being the actual computation of the distributions. We finally consider the relations between the probability of a Boolean function and its complexity.


2017 ◽  
Vol 27 (2) ◽  
Author(s):  
Stanislav V. Smyshlyaev

AbstractThe paper is concerned with relations between the correlation-immunity (stability) and the perfectly balancedness of Boolean functions. It is shown that an arbitrary perfectly balanced Boolean function fails to satisfy a certain property that is weaker than the 1-stability. This result refutes some assertions by Markus Dichtl. On the other hand, we present new results on barriers of perfectly balanced Boolean functions which show that any perfectly balanced function such that the sum of the lengths of barriers is smaller than the length of variables, is 1-stable.


2016 ◽  
Vol 26 (01) ◽  
pp. 1650004 ◽  
Author(s):  
Benny Applebaum ◽  
Dariusz R. Kowalski ◽  
Boaz Patt-Shamir ◽  
Adi Rosén

We consider a message passing model with n nodes, each connected to all other nodes by a link that can deliver a message of B bits in a time unit (typically, B = O(log n)). We assume that each node has an input of size L bits (typically, L = O(n log n)) and the nodes cooperate in order to compute some function (i.e., perform a distributed task). We are interested in the number of rounds required to compute the function. We give two results regarding this model. First, we show that most boolean functions require ‸ L/B ‹ − 1 rounds to compute deterministically, and that even if we consider randomized protocols that are allowed to err, the expected running time remains [Formula: see text] for most boolean function. Second, trying to find explicit functions that require superconstant time, we consider the pointer chasing problem. In this problem, each node i is given an array Ai of length n whose entries are in [n], and the task is to find, for any [Formula: see text], the value of [Formula: see text]. We give a deterministic O(log n/ log log n) round protocol for this function using message size B = O(log n), a slight but non-trivial improvement over the O(log n) bound provided by standard “pointer doubling.” The question of an explicit function (or functionality) that requires super constant number of rounds in this setting remains, however, open.


2020 ◽  
Vol 30 (2) ◽  
pp. 103-116 ◽  
Author(s):  
Kirill A. Popkov

AbstractWe prove that, for n ⩾ 2, any n-place Boolean function may be implemented by a two-pole contact circuit which is irredundant and allows a diagnostic test with length not exceeding n + k(n − 2) under at most k contact breaks. It is shown that with k = k(n) ⩽ 2n−4, for almost all n-place Boolean functions, the least possible length of such a test is at most 2k + 2.


Sign in / Sign up

Export Citation Format

Share Document