scholarly journals Anti-power $j$-fixes of the Thue-Morse word

2021 ◽  
Vol vol. 23 no. 1 (Analysis of Algorithms) ◽  
Author(s):  
Marisa Gaetz

Recently, Fici, Restivo, Silva, and Zamboni introduced the notion of a $k$-anti-power, which is defined as a word of the form $w^{(1)} w^{(2)} \cdots w^{(k)}$, where $w^{(1)}, w^{(2)}, \ldots, w^{(k)}$ are distinct words of the same length. For an infinite word $w$ and a positive integer $k$, define $AP_j(w,k)$ to be the set of all integers $m$ such that $w_{j+1} w_{j+2} \cdots w_{j+km}$ is a $k$-anti-power, where $w_i$ denotes the $i$-th letter of $w$. Define also $\mathcal{F}_j(k) = (2 \mathbb{Z}^+ - 1) \cap AP_j(\mathbf{t},k)$, where $\mathbf{t}$ denotes the Thue-Morse word. For all $k \in \mathbb{Z}^+$, $\gamma_j(k) = \min (AP_j(\mathbf{t},k))$ is a well-defined positive integer, and for $k \in \mathbb{Z}^+$ sufficiently large, $\Gamma_j(k) = \sup ((2 \mathbb{Z}^+ -1) \setminus \mathcal{F}_j(k))$ is a well-defined odd positive integer. In his 2018 paper, Defant shows that $\gamma_0(k)$ and $\Gamma_0(k)$ grow linearly in $k$. We generalize Defant's methods to prove that $\gamma_j(k)$ and $\Gamma_j(k)$ grow linearly in $k$ for any nonnegative integer $j$. In particular, we show that $\displaystyle 1/10 \leq \liminf_{k \rightarrow \infty} (\gamma_j(k)/k) \leq 9/10$ and $\displaystyle 1/5 \leq \limsup_{k \rightarrow \infty} (\gamma_j(k)/k) \leq 3/2$. Additionally, we show that $\displaystyle \liminf_{k \rightarrow \infty} (\Gamma_j(k)/k) = 3/2$ and $\displaystyle \limsup_{k \rightarrow \infty} (\Gamma_j(k)/k) = 3$. Comment: 21 pages

10.37236/878 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Ralucca Gera ◽  
Jian Shen

The Friendship Theorem states that if any two people in a party have exactly one common friend, then there exists a politician who is a friend of everybody. In this paper, we generalize the Friendship Theorem. Let $\lambda$ be any nonnegative integer and $\mu$ be any positive integer. Suppose each pair of friends have exactly $\lambda$ common friends and each pair of strangers have exactly $\mu$ common friends in a party. The corresponding graph is a generalization of strongly regular graphs obtained by relaxing the regularity property on vertex degrees. We prove that either everyone has exactly the same number of friends or there exists a politician who is a friend of everybody. As an immediate consequence, this implies a recent conjecture by Limaye et. al.


2013 ◽  
Vol 09 (03) ◽  
pp. 583-599 ◽  
Author(s):  
MACIEJ ULAS ◽  
ANDRZEJ SCHINZEL

In this paper we are interested in two problems stated in the book of Erdős and Graham. The first problem was stated by Erdős and Straus in the following way: Let n ∈ ℕ+ be fixed. Does there exist a positive integer k such that [Formula: see text] The second problem is similar and was formulated by Erdős and Graham. It can be stated as follows: Can one show that for every nonnegative integer n there is an integer k such that [Formula: see text] The aim of this paper is to give some computational results related to these problems. In particular we show that the first problem has positive answer for each n ≤ 20. Similarly, we show the existence of desired n in the second problem for all n ≤ 9. We also note some interesting connections between these two problems.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 339 ◽  
Author(s):  
Constantin Buşe ◽  
Donal O’Regan ◽  
Olivia Saierli

Let q ≥ 2 be a positive integer and let ( a j ) , ( b j ) and ( c j ) (with j nonnegative integer) be three given C -valued and q-periodic sequences. Let A ( q ) : = A q − 1 ⋯ A 0 , where A j is defined below. Assume that the eigenvalues x , y , z of the “monodromy matrix” A ( q ) verify the condition ( x − y ) ( y − z ) ( z − x ) ≠ 0 . We prove that the linear recurrence in C x n + 3 = a n x n + 2 + b n x n + 1 + c n x n , n ∈ Z + is Hyers–Ulam stable if and only if ( | x | − 1 ) ( | y | − 1 ) ( | z | − 1 ) ≠ 0 , i.e., the spectrum of A ( q ) does not intersect the unit circle Γ : = { w ∈ C : | w | = 1 } .


1994 ◽  
Vol 37 (2) ◽  
pp. 168-173
Author(s):  
Ping Ding ◽  
A. R. Freedman

AbstractLet k ≥ 2 and q = g(k) — G(k), where g(k) is the smallest possible value of r such that every natural number is the sum of at most r k-th powers and G(k) is the minimal value of r such that every sufficiently large integer is the sum of r k-th powers. For each positive integer r ≥ q, let Then for every ε > 0 and N ≥ N(r, ε), we construct a set A of k-th powers such that |A| ≤ (r(2 + ε)r + l)N1/(k+r) and every nonnegative integer n ≤ N is the sum of k-th powers in A. Some related results are also obtained.


2017 ◽  
Vol 13 (05) ◽  
pp. 1095-1117 ◽  
Author(s):  
Ayşe Alaca ◽  
Şaban Alaca ◽  
Zafer Selcuk Aygin ◽  
Kenneth S. Williams

Let [Formula: see text] denote a complex variable with [Formula: see text]. For a positive integer [Formula: see text] let [Formula: see text] If [Formula: see text] we define [Formula: see text] for each nonnegative integer [Formula: see text]. In this paper, we determine results of the type [Formula: see text]


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Ze Gu

A proportionally modular numerical semigroup is the set S a , b , c of nonnegative integer solutions to a Diophantine inequality of the form a x   mod   b ≤ c x , where a , b , and c are positive integers. A formula for the multiplicity of S a , b , c , that is, m S a , b , c = k b / a for some positive integer k , is given by A. Moscariello. In this paper, we give a new proof of the formula and determine a better bound for k . Furthermore, we obtain k = 1 for various cases and a formula for the number of the triples a , b , c such that k ≠ 1 when the number a − c is fixed.


2021 ◽  
Vol 27 (3) ◽  
pp. 113-118
Author(s):  
Yangcheng Li ◽  

It is well known that the number P_k(x)=\frac{x((k-2)(x-1)+2)}{2} is called the x-th k-gonal number, where x\geq1,k\geq3. Many Diophantine equations about polygonal numbers have been studied. By the theory of Pell equation, we show that if G(k-2)(A(p-2)a^2+2Cab+B(q-2)b^2) is a positive integer but not a perfect square, (2A(p-2)\alpha-(p-4)A + 2C\beta+2D)a + (2B(q-2)\beta-(q-4)B+2C\alpha+2E)b>0, 2G(k-2)\gamma-(k-4)G+2H>0 and the Diophantine equation \[AP_p(x)+BP_q(y)+Cxy+Dx+Ey+F=GP_k(z)+Hz\] has a nonnegative integer solution (\alpha,\beta,\gamma), then it has infinitely many positive integer solutions of the form (at + \alpha,bt + \beta,z), where p, q, k \geq 3 and p,q,k,a,b,t,A,B,G\in\mathbb{Z^+}, C,D,E,F,H\in\mathbb{Z}.


2019 ◽  
Vol 35 ◽  
pp. 100-115
Author(s):  
Yu Ber-Lin ◽  
Ting-Zhu Huang ◽  
Xu Sanzhang

A sign pattern is a matrix whose entries belong to the set $\{+, -, 0\}$. An $n$-by-$n$ sign pattern $\mathcal{A}$ is said to be potentially eventually positive if there exists at least one real matrix $A$ with the same sign pattern as $\mathcal{A}$ and a positive integer $k_{0}$ such that $A^{k}>0$ for all $k\geq k_{0}$. An $n$-by-$n$ sign pattern $\mathcal{A}$ is said to be potentially eventually exponentially positive if there exists at least one real matrix $A$ with the same sign pattern as $\mathcal{A}$ and a nonnegative integer $t_{0}$ such that $e^{tA}=\sum_{k=0}^{\infty}\frac{t^{k}A^{k}}{k!}>0$ for all $t\geq t_{0}$. Identifying necessary and sufficient conditions for an $n$-by-$n$ sign pattern to be potentially eventually positive (respectively, potentially eventually exponentially positive), and classifying these sign patterns are open problems. In this article, the potential eventual positivity of the $2$-generalized star sign patterns is investigated. All the minimal potentially eventually positive $2$-generalized star sign patterns are identified. Consequently, all the potentially eventually positive $2$-generalized star sign patterns are classified. As an application, all the minimal potentially eventually exponentially positive $2$-generalized star sign patterns are identified. Consequently, all the potentially eventually exponentially positive $2$-generalized star sign patterns are classified.


2009 ◽  
Vol Vol. 11 no. 1 (Combinatorics) ◽  
Author(s):  
Charlotte Brennan ◽  
Arnold Knopfmacher

Combinatorics International audience A composition of a positive integer n is a finite sequence of positive integers a(1), a(2), ..., a(k) such that a(1) + a(2) + ... + a(k) = n. Let d be a fixed nonnegative integer. We say that we have an ascent of size d or more if a(i+1) >= a(i) + d. We determine the mean, variance and limiting distribution of the number of ascents of size d or more in the set of compositions of n. We also study the average size of the greatest ascent over all compositions of n.


10.37236/6738 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Hojin Choi ◽  
Young Soo Kwon

In this paper, we introduce a new variation of list-colorings. For a graph $G$  and for a given nonnegative integer $t$, a $t$-common list assignment of $G$ is a mapping $L$ which assigns each vertex $v$ a set $L(v)$ of colors such that given set of $t$ colors belong to $L(v)$ for every $v\in V(G)$. The $t$-common list chromatic number of $G$ denoted by $ch_t(G)$ is defined as the minimum positive integer $k$ such that there exists an $L$-coloring of $G$ for every $t$-common list assignment $L$ of $G$, satisfying $|L(v)| \ge k$ for every vertex $v\in V(G)$. We show that for all positive integers $k, \ell$ with $2 \le k \le \ell$ and for any positive integers $i_1 , i_2, \ldots, i_{k-2}$ with $k \le i_{k-2} \le \cdots \le i_1 \le \ell$, there exists a graph $G$ such that $\chi(G)= k$, $ch(G) =  \ell$ and $ch_t(G) = i_t$ for every $t=1, \ldots, k-2$. Moreover, we consider the $t$-common list chromatic number of planar graphs. From the four color theorem and the result of Thomassen (1994), for any $t=1$ or $2$, the sharp upper bound of $t$-common list chromatic number of planar graphs is $4$ or $5$. Our first step on $t$-common list chromatic number of planar graphs is to find such a sharp upper bound. By constructing a planar graph $G$ such that $ch_1(G) =5$, we show that the sharp upper bound for $1$-common list chromatic number of planar graphs is $5$. The sharp upper bound of $2$-common list chromatic number of planar graphs is still open. We also suggest several questions related to $t$-common list chromatic number of planar graphs.


Sign in / Sign up

Export Citation Format

Share Document