scholarly journals Numerical and Analytical Modeling of Permanent Deformations in Panels Made of Nanomodified Carbon Fiber Reinforced Plastic with Asymmetric Packing

2021 ◽  
Vol 15 ◽  
pp. 172-180
Author(s):  
S. Radaev

In this paper, a mathematical model of a multilayer panel made of nanomodified carbon fiber reinforced plastic with asymmetric packing is proposed. The introduction of nanosized particles into the composition of the composite or its components (fiber or binder) allows not only to increase its physical and mechanical properties, but also to improve the picture of the residual stress-strain state. The paper investigates the effect of nanomodification of carbon fiber reinforced plastic on the residual stress-strain state after molding using numerical and analytical methods. Numerous results of computational experiments have been obtained. The results of numerical and analytical modeling are compared with experimental data. Conclusions are drawn about the possibility of reducing the residual stress-strain state in structures with asymmetric reinforcement schemes when using a matrix containing carbon nanoparticles. A mathematical model of a multilayer panel made of nano-modified carbon fiber with asymmetric packing has been built. Investigation of the residual stress-strain state of structural elements made of carbon fiber reinforced plastic made it possible to reveal the possibility of reducing the residual stress-strain state and leash in structures with asymmetric reinforcement schemes when using a matrix containing carbon nanoparticles.

2021 ◽  
Vol 1027 ◽  
pp. 15-21
Author(s):  
Bin Yu ◽  
Jian Jun Zhang ◽  
Ji Peng Zhao ◽  
Tian Ju Ma

Composite over-wrapped pressure vessel (COPV) with ultra-thin metal liner and high strength carbon fiber reinforced plastic (CFRP) structure was widely used in space system. Meanwhile, there are some difficulties in the calculation of COPV stress-strain state related to the elastic-plastic liner and elastic composite. In this paper a novel design theory was proposed for calculating stress distribution in the bi-material COPV and determining the optimal thickness parameters of COPV based on traditional grid theory optimization. This new theory named Parameters Correspondence Relationship Structure Design Method (PCRSDM) can increase the design precision and structure performance factor of COPV compared to traditional grid theory. The correct models of mechanical characteristic between liner and CFRP are established from the view of optimized grid theory, the present theory is useful to develop a theoretical framework to calculate and design the COPV double shells. The COPV stress-strain behavior is also systemically studied by the ANSYS finite element analysis (FEA), the results show good agreement between FEA simulation and PCRSDM calculation. Both FEA and PCRSDM can meet the design requirements of COPV. A complete design, development and qualification testing of a specialized COPV used to satellite propulsion system was successfully conducted to verify the COPV design in terms of PCRSDM and FEA, the result show that PCRSDM is suitable for the design of COPV.


2012 ◽  
Vol 2012 (0) ◽  
pp. _OS0603-1_-_OS0603-3_
Author(s):  
Tomotaka OGASAWARA ◽  
Nobuhiro YOSHIKAWA ◽  
Kojirou NAKAGAWA ◽  
Junji OKAZAKI ◽  
Takayuki MATSUMOTO

2013 ◽  
Vol 39 (3) ◽  
pp. 99-105 ◽  
Author(s):  
Nobuhiro YOSHIKAWA ◽  
Tomotaka OGASAWARA ◽  
Kojirou NAKAGAWA ◽  
Junji OKAZAKI ◽  
Takayuki MATSUMOTO

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 576
Author(s):  
Liang Luo ◽  
Jie Lai ◽  
Jun Shi ◽  
Guorui Sun ◽  
Jie Huang ◽  
...  

This paper investigates the working performance of reinforcement concrete (RC) beams strengthened by Carbon-Fiber-Reinforced Plastic (CFRP) with different anchoring under bending moment, based on the structural stressing state theory. The measured strain values of concrete and Carbon-Fiber-Reinforced Plastic (CFRP) sheet are modeled as generalized strain energy density (GSED), to characterize the RC beams’ stressing state. Then the Mann–Kendall (M–K) criterion is applied to distinguish the characteristic loads of structural stressing state from the curve, updating the definition of structural failure load. In addition, for tested specimens with middle anchorage and end anchorage, the torsion applied on the anchoring device and the deformation width of anchoring device are respectively set parameters to analyze their effects on the reinforcement performance of CFRP sheet through comparing the strain distribution pattern of CFRP. Finally, in order to further explore the strain distribution of the cross-section and analyze the stressing-state characteristics of the RC beam, the numerical shape function (NSF) method is proposed to reasonably expand the limited strain data. The research results provide a new angle of view to conduct structural analysis and a reference to the improvement of reinforcement effect of CFRP.


2021 ◽  
pp. 073168442098359
Author(s):  
Luyao Xu ◽  
Jiuru Lu ◽  
Kangmei Li ◽  
Jun Hu

In this article, a micro-heterogeneous material simulation model with carbon fiber and resin phase about laser ablation on carbon fiber reinforced plastic (CFRP) is established by Ansys. The ablation process of CFRP by nanosecond ultraviolet laser is simulated, and the mechanism of pulse energy and spot spacing on the heat-affected zone (HAZ) is studied, then the process parameters are optimized with the goal of HAZ size and processing efficiency, and finally the validity of the model is verified by experiments. It is found that the residual gradient and the width of the radial HAZ increase with the increase of the spot spacing, and the width of the axial HAZ decreases slightly with the increase of the spot spacing, which indicates the existence of the optimal spot spacing. Second, the ablation depth increases with the increase of the pulse energy, and the carbon fiber retains a relatively complete degree of exposure when the pulse energy is low, which has a certain guiding significance for the cleaning and bonding of CFRP.


Sign in / Sign up

Export Citation Format

Share Document