scholarly journals An Novel Atomic Scalar Magnetometer Using Laser

The measurement precision of commercial atom scalar magnetometer is relatively backward compared with that of quantum magnetometer. However, the application of quantum magnetometers such as SERF requires more stringent environmental background requirements, which is not suitable for magnetic field measurement in the geomagnetic environment. The purpose of this paper is to design a 4He atom scalar magnetometer using ECDL laser. Compared with the conventional atomic scalar magnetometer, this magnetometer has higher measuring precision and can work normally in the geomagnetic environment. In order to achieve the above goals, the sensitivity formula of the atomic scalar magnetometer is first deduced and calculated, and the key physical factors that directly affect the sensitivity are the optical pumping rate, transverse relaxation rate, and longitudinal relaxation rate. Then, the light source and 4He cell are determined as key components which affect sensitivity. On this basis, the optical path of the 4He atomic scalar magnetometer using laser is designed in this paper. The light path ensures the stability of the laser wavelength of 1083.207nm by the saturation absorption spectrum method, and it ensures the circularly polarized light enters the 4He cell through the combination of various optical components. This paper also studies the electric excitation technology of the 4He cell. And, combined with simulation experiments, the High-Frequency discharge excitation circuit with high energy transfer efficiency and corresponding matching network are determined. Through the optical wavelength meter, it can be determined that the optical path designed in this paper can guarantee the wavelength stability of 1083.207nm for a long time. By analyzing the detection signals of PD, the circularly polarized light enters the 4He cell in the light circuit designed in this paper has a higher degree of polarization. The High-Frequency discharge excitation circuit designed in this paper can light up the cell smoothly, and the input power when the circuit works stably is about 6W. Finally, the static sensitivity of the magnetometer is 5pT/Hz1/2. The 4He atom scalar magnetometer using ECDL laser designed in this paper has high static sensitivity, which basically meets the design requirements, and the instrument can be used normally in the geomagnetic environment. However, the instrument still has a lot of room for improvement, including optical path and cell performance optimization, and we will continue to study in this direction.


2020 ◽  
Vol 34 (16) ◽  
pp. 2050181
Author(s):  
Liang Chen

In this paper, we study Hall effects of the monolayer MoS2 with Rashba and Ising spin-orbit coupling (SOC) under the application of a circularly polarized light. The Chern number and spin textures at high frequency regime are studied based on the Floquet theory. We found that the SOCs induced valley Hall effect. The sign of Chern numbers at high frequency regime can be reversed by engineering interplay between Ising SOC and light intensity. The system undergoes a topological phase transition from valley Hall state to anomalous Hall state. By analyzing the spin texture, we study the origin of the Hall effects.



Author(s):  
Marcos F. Maestre

Recently we have developed a form of polarization microscopy that forms images using optical properties that have previously been limited to macroscopic samples. This has given us a new window into the distribution of structure on a microscopic scale. We have coined the name differential polarization microscopy to identify the images obtained that are due to certain polarization dependent effects. Differential polarization microscopy has its origins in various spectroscopic techniques that have been used to study longer range structures in solution as well as solids. The differential scattering of circularly polarized light has been shown to be dependent on the long range chiral order, both theoretically and experimentally. The same theoretical approach was used to show that images due to differential scattering of circularly polarized light will give images dependent on chiral structures. With large helices (greater than the wavelength of light) the pitch and radius of the helix could be measured directly from these images.



2021 ◽  
Author(s):  
Zhaoming Zhang ◽  
Takunori Harada ◽  
Adriana Pietropaolo ◽  
Yuting Wang ◽  
Yue Wang ◽  
...  

Preferred-handed propeller conformation was induced by circularly polarized light irradiation to three amorphous molecules with trigonal symmetry, and the molecules with induced chirality efficiently exhibited blue circularly polarized luminescence. In...



ACS Nano ◽  
2021 ◽  
Author(s):  
Ji Hao ◽  
Haipeng Lu ◽  
Lingling Mao ◽  
Xihan Chen ◽  
Matthew C. Beard ◽  
...  








Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 220
Author(s):  
Boxuan Gao ◽  
Jeroen Beeckman ◽  
Kristiaan Neyts

We demonstrate a laser beam combiner based on four photo-patterned Pancharatnam–Berry (PB) phase gratings, which is compact and has high diffraction efficiency for incident circularly polarized light. The nematic liquid crystal mixture E7 is used as anisotropic material, and the thickness of the layer is controlled by spacers. The beam combiner can bring two parallel laser beams closer to each other while remaining parallel. This work shows the potential to realize components based on flat optical LC devices.



1985 ◽  
Vol 82 (2) ◽  
pp. 401-405 ◽  
Author(s):  
D. Keller ◽  
C. Bustamante ◽  
M. F. Maestre ◽  
I. Tinoco


Sign in / Sign up

Export Citation Format

Share Document