scholarly journals Model for 1/f Noise in Graphene and in More Common Semiconductors

Measurements performed on several graphene samples have shown the presence of a minimum of the flicker noise power spectral density near the charge neutrality point. This behavior is anomalous with respect to what is observed in more usual semiconductors. Here, we report our explanation for this difference. We simulate the 1/f noise behavior of devices made of graphene and of more common semiconductors, through a model based on the validity of the mass-action law and on the conservation of the charge neutrality. We conclude that the minimum of the flicker noise at the charge neutrality point can be observed only in very clean samples of materials with similar mobilities for electrons and holes.

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Massimo Macucci ◽  
Paolo Marconcini

Graphene is a material of particular interest for the implementation of sensors, and the ultimate performance of devices based on such a material is often determined by its flicker noise properties. Indeed, graphene exhibits, with respect to the vast majority of ordinary semiconductors, a peculiar behavior of the flicker noise power spectral density as a function of the charge carrier density. While in most materials flicker noise obeys the empirical Hooge law, with a power spectral density inversely proportional to the number of free charge carriers, in bilayer, and sometimes monolayer, graphene a counterintuitive behavior, with a minimum of flicker noise at the charge neutrality point, has been observed. We present an explanation for this stark difference, exploiting a model in which we enforce both the mass action law and the neutrality condition on the charge fluctuations deriving from trapping/detrapping phenomena. Here, in particular, we focus on the comparison between graphene and other semiconducting materials, concluding that a minimum of flicker noise at the charge neutrality point can appear only in the presence of a symmetric electron-hole behavior, a condition characteristic of graphene, but which is not found in the other commonly used semiconductors.


Sign in / Sign up

Export Citation Format

Share Document