flicker noise
Recently Published Documents


TOTAL DOCUMENTS

790
(FIVE YEARS 122)

H-INDEX

36
(FIVE YEARS 4)

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8340
Author(s):  
Arkadiusz Szewczyk ◽  
Łukasz Gaweł ◽  
Kazimierz Darowicki ◽  
Janusz Smulko

We proposed applying low-frequency (flicker) noise in proton-exchange membrane fuel cells under selected loads to assess their state of health. The measurement set-up comprised a precise data acquisition board and was able to record the DC voltage and its random component at the output. The set-up estimated the voltage noise power spectral density at frequencies up to a few hundred mHz. We observed the evolution of the electrical parameters of selected cells of different qualities. We confirmed that flicker noise intensity varied the most (more than 10 times) and preceded changes in the impedance or a drop in the output DC voltage (less than 2 times). The data were observed for current loads (from 0.5 to 32 A) far from the permissible load. We deduce that the method can be utilised in industrial conditions to monitor the state of health of the selected cells by noise analysis. The method can be used in real-time when the flicker noise is measured within the range of a few Hz and requires a reasonable amount of averaging time to estimate its power spectral density. The presented method of flicker noise measurement has considerable potential for use in innovative ways of fuel cell quality monitoring.


2021 ◽  
Author(s):  
Morteza Nattagh Najafi ◽  
Susan Tizdast ◽  
Zahra Moghaddam ◽  
Mahmoud Samadpour

Abstract Using the method developed in a recent paper (Euro. Phys. J. B 92.8 (2019): 1-28) we consider 1/f noise in two-dimensional electron gas (2DEG). The electron coherence length of the system is considered as a basic parameter for discretizing the space, inside which the dynamics of electrons is described by quantum mechanics, while for length scales much larger than it the dynamics is semi-classical. For our model, which is based on the Thomas-Fermi-Dirac approximation, there are two control parameters: temperature T and the disorder strength (∆). Our Monte Carlo studies show that the system exhibits 1/f noise related to the electronic avalanche size, which can serve as a model for describing the experimentally observed flicker noise in 2DEG. The power spectrum of our model scales with frequency with an exponent in the interval 0.3 < αPS < 0.6. We numerically show that the electronic avalanches are scale invariant with power-law behaviors in and out of the metal-insulator transition line.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012046
Author(s):  
R R Khairullina ◽  
S A Demin ◽  
V A Yunusov ◽  
O Y Panischev

Abstract This work presents the results of parameterization of magnetoencephalogram signals from healthy subjects and a patient with photosensitive epilepsy. Diagnostic criteria were established during the extraction of resonant and high-frequency (chaotic) components of the initial time signals. It is shown that an increase in the intensity of the chaotic components of the studied signals in the high-frequency region leads to a violation of cross-correlation relationships and a decrease in the level of manifestation of frequency-phase synchronization. The discovered signs of photosensitive epilepsy will contribute to the development of new methods for the diagnosis and medical control of this disease based on Flicker-Noise Spectroscopy.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2655
Author(s):  
Zhaokun Zhou ◽  
Xiaoran Li ◽  
Xinghua Wang ◽  
Wei Gu

This paper presents an ultra-wideband (UWB) down-conversion mixer with low-noise, high-gain and small-size. The negative impedance technique and source input method are applied for the proposed mixer. The negative impedance achieves the dynamic current injection and increases the mixer output impedance, which reduces the mixer flicker noise and increases its conversion gain. The source input method allows the input matching networks to be cancelled, avoiding the noise and loss introduced by the matching resistors, saving the chip area occupied by the matching inductors. The proposed mixer is designed in 45-nm SOI process provided by GlobalFoundries. The simulation results show a conversion gain of 11.4–14.3 dB, ranging from 3.1 to 10.6 GHz, a minimum noise figure of 9.8 dB, a RF port return loss of less than −11 dB, a port-to-port isolation of better than −48 dB, and a core chip area of 0.16 × 0.16 mm2. The power consumption from a 1 V supply voltage is 2.85 mW.


2021 ◽  
Author(s):  
Ara Abdulsatar Assim Assim ◽  
Evgenii Balashov

The given work is devoted to designing and implementing different dynamic offset cancellation techniques for 50 nm technology CMOS operational amplifiers. The goal is to minimize or get rid of the effects of the offset voltage. Offset voltage exists in all differential amplifiers due to the fact that no pair of transistors can be fabricated with the same size, there is always a slight difference in their dimensions (length or width), this gives rise to an undesirable effect called offset, the value of offset voltage for cheap commercial amplifiers are in the range of 1 to 10 mV, de-spite the fact that this isn’t a significant value, due to the high gain of such amplifiers, this voltage is amplified by tens or hundreds of times, this results in clipping of the output signal and this further limits the amplifier’s maximum allowable input voltage within the given dynamic range, hence its of great importance to take this small voltage into consideration, low-offset amplifiers find applications in mixers, analog to digital converters, instrumentation devices, etc. In this thesis, by using two different techniques for removing offset voltage (chopping and auto-zeroing), five low offset operational amplifiers were designed. The implemented methods reduced the flicker noise by more than 457 times (from 9.4 nV/√Hz to 20 pV/√Hz) at 1 Hz. All the simulations were done using Cadence Virtuoso.


2021 ◽  
Author(s):  
Ara Abdulsatar Assim Assim ◽  
Evgenii Balashov

The given work is devoted to designing and implementing different dynamic offset cancellation techniques for 50 nm technology CMOS operational amplifiers. The goal is to minimize or get rid of the effects of the offset voltage. Offset voltage exists in all differential amplifiers due to the fact that no pair of transistors can be fabricated with the same size, there is always a slight difference in their dimensions (length or width), this gives rise to an undesirable effect called offset, the value of offset voltage for cheap commercial amplifiers are in the range of 1 to 10 mV, de-spite the fact that this isn’t a significant value, due to the high gain of such amplifiers, this voltage is amplified by tens or hundreds of times, this results in clipping of the output signal and this further limits the amplifier’s maximum allowable input voltage within the given dynamic range, hence its of great importance to take this small voltage into consideration, low-offset amplifiers find applications in mixers, analog to digital converters, instrumentation devices, etc. In this thesis, by using two different techniques for removing offset voltage (chopping and auto-zeroing), five low offset operational amplifiers were designed. The implemented methods reduced the flicker noise by more than 457 times (from 9.4 nV/√Hz to 20 pV/√Hz) at 1 Hz. All the simulations were done using Cadence Virtuoso.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Almog Reshef ◽  
Maytal Caspary Toroker

AbstractFlicker noise causes decoherence in Josephson junction-based superconducting qubits, thus limiting their practical potential as building blocks for quantum computers. This is due to limited length and complexity of executable algorithms, and increased dependency on error-correcting measures. Therefore, identifying and subsiding the atomic sources of flicker noise are of great importance to the development of this technology. We developed a method that combines ab initio DFT calculations and quantum dynamics to model charge transport across a Josephson junction, by which it is possible to more accurately assess different defects as sources of flicker noise. We demonstrate the use of our method in an investigation of various atomic defects, including vacancies, trapping, and substitutions, in an Al|Al2O3|Al Josephson junction. This demonstration both reveals weaknesses in previous attempts to pinpoint the atomic sources of flicker noise and highlights new candidates.


2021 ◽  
pp. 147592172110446
Author(s):  
Claudia Barile ◽  
Caterina Casavola ◽  
Giovanni Pappalettera ◽  
Vimalathithan Paramsamy Kannan

Signal-based acoustic emission data are analysed in this research work for identifying the damage modes in carbon fibre–reinforced plastic (CFRP) composites. The research work is divided into three parts: analysis of the shifting in the spectral density of acoustic waveforms, use of waveform entropy for selecting the best wavelet and implementation of wavelet packet transform (WPT) for identifying the damage process. The first two methodologies introduced in this research work are novel. Shifting in the spectral density is introduced in analogous to ‘flicker noise’ which is popular in the field of waveform processing. The entropy-based wavelet selection is refined by using quadratic Renyi’s entropy and comparing the spectral energy of the dominating frequency band of the acoustic waveforms. Based on the method, ‘dmey’ wavelet is selected for analysing the waveforms using WPT. The slope values of the shifting in spectral density coincide with the results obtained from WPT in characterising the damage modes. The methodologies introduced in this research work are promising. They serve the purpose of identifying the damage process effectively in the CFRP composites.


Author(s):  
Bachir Gourine ◽  
Sofiane Khelifa ◽  
Kamel Hasni ◽  
Farida Bachir Belmehdi

The objective of this work is to characterize the signals and noises of Geocenter variations time series obtained from different space geodesy techniques as Global Positioning System (GPS), Doppler Orbitography and Radiopositioning Integrated on Satellite (DORIS), and Satellite Laser Ranging (SLR). The proposed methodology is based on the estimation of periodic signals by performing frequency analysis using FAMOUS software (Frequency Analysis Mapping On Unusual Sampling) and evaluation of level and type of noises by Allan variance technique and Three Corned Hat (TCH) method. The available data concern 13 years (from 1993 to 2006) of weekly series of Geocenter residuals components and scale factor variations, according to ITRF2000. The results estimated are more accurate according to GPS and SLR of about 2-8 mm than DORIS of about 8-42 mm, for Geocenter. Better RMS of scale factor was obtained of about 0.1ppb (0.6mm) for GPS technique than SLR and DORIS with 0.6 and 0.9 ppb (3.6 and 5.4mm), respectively. The estimated seasonal signals amplitudes are in the range of few milimeters per technique with centimetre level for Z Geocenter component of DORIS. The Geocenter motion derived from SLR technique is more accurate and close to the geodynamic models. The noise analysis shows a dominant white noise in the   SLR and DORIS Geocenter solutions at a level of 0.6-1 mm and 10-40 mm, respectively. However, the GPS solution is characterized by a flicker noise at millimetre level, relating to mismodeling systematic errors.  


Sign in / Sign up

Export Citation Format

Share Document