charge carrier density
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 62)

H-INDEX

22
(FIVE YEARS 4)

Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Mateusz Śmietana ◽  
Bartosz Janaszek ◽  
Katarzyna Lechowicz ◽  
Petr Sezemsky ◽  
Marcin Koba ◽  
...  

Abstract Sensitivity, selectivity, reliability, and measurement range of a sensor are vital parameters for its wide applications. Fast growing number of various detection systems seems to justify worldwide efforts to enhance one or some of the parameters. Therefore, as one of the possible solutions, multi-domain sensing schemes have been proposed. This means that the sensor is interrogated simultaneously in, e.g., optical and electrochemical domains. An opportunity to combine the domains within a single sensor is given by optically transparent and electrochemically active transparent conductive oxides (TCOs), such as indium tin oxide (ITO). This work aims to bring understanding of electro-optically modulated lossy-mode resonance (LMR) effect observed for ITO-coated optical fiber sensors. Experimental research supported by numerical modeling allowed for identification of the film properties responsible for performance in both domains, as well as interactions between them. It has been found that charge carrier density in the semiconducting ITO determines the efficiency of the electrochemical processes and the LMR properties. The carrier density boosts electrochemical activity but reduces capability of electro-optical modulation of the LMR. It has also been shown that the carrier density can be tuned by pressure during magnetron sputtering of ITO target. Thus, the pressure can be chosen as a parameter for optimization of electro-optical modulation of the LMR, as well as optical and electrochemical responses of the device, especially when it comes to label-free sensing and biosensing.


Author(s):  
Shrikant SAINI ◽  
Izuki Matsumoto ◽  
Sakura Kishishita ◽  
Ajay Kumar Baranwal ◽  
Tomohide Yabuki ◽  
...  

Abstract Hybrid halide perovskite has been recently focused on thermoelectric energy harvesting due to the cost-effective fabrication approach and ultra-low thermal conductivity. To achieve high performance, tuning of electrical conductivity is a key parameter that is influenced by grain boundary scattering and charge carrier density. The fabrication process allows tuning these parameters. We report the use of anti-solvent to enhance the thermoelectric performance of lead-free hybrid halide perovskite, CH3NH3SnI3, thin films. Thin films with anti-solvent show higher connectivity in grains and higher Sn+4 oxidation states which results in enhancing the value of electrical conductivity. Thin films were prepared by a cost-effective wet process. Structural and chemical characterizations were performed using x-ray diffraction, scanning electron microscope, and x-ray photoelectron spectroscopy. The value of electrical conductivity and the Seebeck coefficient were measured near room temperature. The high value of power factor (1.55 µW/m.K2 at 320 K) was achieved for thin films treated with anti-solvent.


2022 ◽  
Vol 64 (1) ◽  
pp. 64
Author(s):  
Ю.А. Положенцева ◽  
Е.В. Алексеева ◽  
М.П. Карушев

Complexes of metals with Schiff bases are considered as promising materials for creating energy storage and photovoltaic devices. In this work, the semiconducting properties of a polymer nickel film with a salen-type ligand (poly-Ni(CH3O-Salen)) were studied by spectrophotometric and Faraday impedance spectroscopy. The Mott-Schottky analysis showed that the polymer film is a semiconducting material with a fairly narrow band gap, high charge carrier density and p-type conductivity. Using the method of Faraday impedance spectroscopy, the limiting stage of the oxygen photoelectroreduction reaction, the process of charge transfer from the film to molecular oxygen, has been established.


Author(s):  
Xu Liang ◽  
Lu Han ◽  
Pengwei Gong ◽  
Sicong Zhu ◽  
Ruibin Huang ◽  
...  

Abstract The polycrystal CuO curved nanowires were synthesized on Cu mesh by a facile alkalization method. The visible light-driven CuO curved nanowires were observed to have highly sensitivity for non-enzymatic ethanol sensing in solution and fast antibacterial property under flashlight irradiation. Compared to the single-crystal CuO nanowires, the polycrystal CuO nanowires were investigated based on the analysis of the morphology, nanostructure, theoretical modeling, and photoelectrochemical performance. As a result, the highest photocurrent densities were obtained by polycrystal CuO curved nanowires, as the facet heterojunction in curved nanowires played a key role, which existed in the interface between facets CuO (111) and CuO (110) resulting in the effectively separation of photoelectron-holes, thereby increasing the charge carrier density. Herein, the CuO curved nanowires were assembled as a photoelectrochemical sensor to detect the low concentration ethanol ranging from 10 to 100 nM, and then showed a high sensitivity. The fast antibacterial performance of CuO curved nanowires was found to completely kill 107 CFU/mL E.coli under flashlight irradiation in 20 minutes. The proposed CuO curved nanowires electrode with self-cleaning performance can be ideal for monitoring the low concentration ethanol in real-time at room temperature as photoelectrodes.


Author(s):  
Suleshma Katiyar ◽  
Neha Verma ◽  
Jyotika Jogi

Abstract This paper presents a compact analytical DC model for high mobility VOPc (vanadyl pthalocyanine)/p-6P (para-sexiphenyl) ambipolar organic heterojunction field-effect transistor (OHJFET). The proposed model accounts for both unipolar and ambipolar regimes of VOPc/p-6P ambipolar OHJFET by considering spatial charge carrier density in the channel. The model incorporates subthreshold conduction phenomenon in addition to describing beyond threshold transport. The model is extended to describe ambipolar regime occurring in subthreshold region at low drain to source voltage, VDS. Device characteristics and various parameters obtained are presented and are further used to model recombination zone and channel potential profile. Results obtained, are compared with available experimental data and a good match is observed.


2021 ◽  
Author(s):  
Kuei Sun ◽  
Zhi-qiang Bao ◽  
Wenlong Yu ◽  
Samuel D Hawkins ◽  
John F Klem ◽  
...  

Abstract Charge transport physics in InAs/GaSb bi-layer systems has recently attracted attention for the experimental search for two-dimensional topological superconducting states in solids. Here we report measurement of charge transport spectra of nano devices consisting of an InAs/GaSb quantum well sandwiched by tantalum superconductors. We explore the current-voltage relation as a function of the charge-carrier density in the quantum well controlled by a gate voltage and an external magnetic field. We observe three types of differential resistance peaks, all of which can be effectively tuned by the external magnetic field, and, however, two of which appear at electric currents independent of the gate voltage, indicating a dominant mechanism from the superconductor and the system geometry. By analyzing the spectroscopic features, we nd that the three types of peaks identify Andreev reflections, quasi-particle interference, and superconducting transitions in the device, respectively. Our results provide a basis for further exploration of possible topological superconducting state in the InAs/GaSb system.


Author(s):  
Jonathan Leon ◽  
Sven Pletincx ◽  
Herman Terryn ◽  
Berkem Özkaya ◽  
Eva García-Lecina ◽  
...  

Abstract A model trivalent chromium-based electroplating bath doped with different concentration of Fe was used to obtain the different metallic coatings. The impact of the Fe was investigated on the Cr layer and on its native passive film by a detailed characterisation using X-ray Photoelectron Spectroscopy (XPS), Angle Resolved XPS and Auger Electron Spectroscopy. Moreover, the semiconducting properties of their oxide layers were explored by Mott-Schottky and the corrosion performance by the linear polarisation resistance and kinetics of the oxide formation. Results revealed not only a homogeneous Fe distribution into the Cr layer but also the presence of an iron-chromium duplex oxide layer for concentrations ≥ 100 mg/L Fe in the bath. The Mott-Schottky analysis showed a p-n junction for such coatings due to the presence of an iron oxide layer on the top of a chromium oxide one which increases the total amount of point defects (charge carrier density) and drastically affects their corrosion resistance (the polarisation resistance decreased by one order of magnitude and their oxide layer showed slower kinetics and a higher passivation current). In contrast, coatings with a single chromium oxide layer showed a p-type semiconducting behaviour as well as the best corrosion performance.


Author(s):  
Michael Rudolf Koblischka ◽  
Anjela Koblischka-Veneva

As shown previously, a relation between the superconducting transition temperature and some characteristic distance in the crystal lattice holds, which enables the calculation of the superconducting transition temperature, Tc, based only on the knowledge of the electronic configuration and of some details of the crystallographic structure. This relation was found to apply for a large number of superconductors, including the high-temperature superconductors, the iron-based materials, alkali fullerides, metallic alloys, and element superconductors. When applying this scheme called Roeser-Huber formula to Moiré-type superconductivity, i.e., magic-angle twisted bi-layer graphene (tBLG) and bi-layer WSe2, we find that the calculated transition temperatures for tBLG are always higher than the available experimental data, e.g., for the magic angle 1.1∘, we find Tc≈ 4.2–6.7 K. Now, the question arises why the calculation produces larger Tc’s. Two possible scenarios may answer this question: (1) The given problem for experimentalists is the fact that for electric measurements always substrates/caps are required to arrange the electric contacts. When now discussing superconductivity in atomically thin objects, also these layers may play a role forming the Moiré patterns. The consequence of such substrate-induced super-Moiré patterns is that the resulting Moiré pattern always will show a larger cell size, and thus, a lower Tc of the final structure will result. (2) A correction factor to the Roeser-Huber formalism may be required to account for the low charge carrier density of the tBLG. Here, we test both scenarios and find that the introduction of a correction factor η enables a proper calculation of Tc, reproducing the experimental data. We find that η depends exponentially on the value of Tc.


2021 ◽  
Author(s):  
Andreas Fell ◽  
Tim Niewelt ◽  
Bernd Steinhauser ◽  
Friedemann D. Heinz ◽  
Martin C. Schubert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document