scholarly journals Wavelet Transform and Fractal Theory for Detection and Classification of Self-extinguishing and Fugitive Power Quality Disturbances

Author(s):  
S. Lakrih ◽  
J. Diouri

In this paper, fractal theory and wavelet transform are combined to detect and classify self-extinguishing and fugitive scenarios of power quality disturbances (PQDs). After deciding whether the disturbance is simple or complex, the additional voltage is denoised through Discrete Wavelet Transform (DWT); the denoising process is adapted according to whether the distorted voltage contains oscillatory transients or not. At the detection stage, the grille fractal dimension of the DWT decomposition detail is computed. Then, a threshold is deduced to detect the start and end moments of the disturbance. The results reveal that the proposed detection scheme yields accurate location of PQDs even in the presence of high oscillatory transients. An algorithm based on geometric and statistical approaches is developed at the classification stage to recognize PQDs automatically. The geometric classification is based on Continuous Wavelet Transform (CWT), whereas the statistical classification is based on Multifractal Detrended Fluctuations Analysis (MFDFA) and an energy metric. The results prove that the combination of geometric and statistical classification can serve as an effective discrimination tool for PQDs. The major strength of the proposed approach is its ability to interpret the impact of each disturbance on the multifractal behavior of the nominal voltage, thus giving the possibility to draw the necessary generalizations for real-time applications.

2018 ◽  
Vol 7 (4.35) ◽  
pp. 939
Author(s):  
Tiagrajah V. Janahiraman ◽  
Muhammad Hazwan Harun

Power utility providers and power industry service providers face a significant challenge in identifying the type of Power Quality Disturbances (PQD) automatically. This paper discusses a method to classify PQD using signal decomposition, statistical analysis and machine learning. Firstly, Discrete Wavelet Transform (DWT) is applied on the generated PQD signals to decompose the signal to obtain its representation in time and frequency domain. Secondly, first and second order statistical parameters are computed on the selected sub-band of DWT. These parameters are used as features vector for the machine learning based classifier. Our database consists of 2400 generated signals of PQD, which were divided into train and test set. Another set of noise corrupted signal database was generated to evaluate the capability of the system. SVM using quadratic kernel was selected as the classifier of the Power Quality Disturbances feature vector. Comparisons were also made with other types of classifiers and other types of mother wavelet filter functions. The results show that the combination of DWT and SVM managed to classify Power Quality Disturbances with high accuracy and has a strong resistance towards noise.  


Sign in / Sign up

Export Citation Format

Share Document