scholarly journals Çanakkale Boğazı’nda Pinna nobilis (Linnaeus, 1758) Popülasyonunda Ölüm Oranlarının Tespiti

Author(s):  
Ata AKSU
Keyword(s):  
Biomarkers ◽  
2021 ◽  
pp. 1-12
Author(s):  
İbrahim Ender Künili ◽  
Selin Ertürk Gürkan ◽  
Ata Aksu ◽  
Emre Turgay ◽  
Fikret Çakir ◽  
...  

2016 ◽  
Vol 163 (2) ◽  
Author(s):  
Jose R. Garcia-March ◽  
Santiago Jiménez ◽  
Miguel A. Sanchis ◽  
Sergio Monleon ◽  
Jonathan Lees ◽  
...  

2021 ◽  
Author(s):  
Melita Peharda ◽  
David Gillikin ◽  
Bernd Schöne ◽  
Anouk Verheyden-Gillikin ◽  
Hana Uvanović ◽  
...  

<p><em>Pinna nobilis</em> is a large bivalve endemic to the Mediterranean Sea that lives in shallow coastal areas. Due to its size and relatively fast shell growth rates, it is an interesting taxon for high resolution geochemical and sclerochronological research. Subsequently to previous analyses of δ<sup>18</sup>O and δ<sup>13</sup>C in <em>P. nobilis</em> shells, here, we investigate nitrogen isotopes in the carbonate-bound organic matrix (δ<sup>15</sup>N<sub>CBOM</sub>) of this species. Our objectives were to test if <em>P. nobilis</em> shells (i) can be used as an indicator of the isotopic baseline of the system, and (ii) is a good candidate for obtaining high-resolution temporal data on environmental δ<sup>15</sup>N variability. Due to the multiple mass mortality events of <em>P. nobilis</em> spreading throughout the Mediterranean, including the Adriatic Sea, we also tested if (iii) <em>P. nobilis</em> geochemistry changes as a response to diseases.</p><p>Shells were opportunistically collected by skin diving from 4 shallow coastal localities in the eastern Adriatic, as a part of a project on mortality monitoring. Specimens from Lim channel (October 2019), Kaštela Bay (January 2020) and Mali Ston Bay (November 2019) were collected alive, while in Pag Bay, shells of three recently dead specimens were collected in September 2020. Tissue and epibionts were removed and shells carefully cleaned and air-dried. Shell powder was collected by milling sample swaths by hand using a DREMEL Fortiflex drill equipped with a 300 μm tungsten carbide drill bit. For δ<sup>15</sup>N<sub>CBOM</sub> analysis, three shells from each locality were processed and three replicas were collected from each of these shells by milling shallow lines parallel to the growth axis from the internal shell surface. In addition, high-resolution δ<sup>15</sup>N<sub>CBOM</sub> data were obtained for one shell from Kaštela by milling lines (N=40) perpendicular to the major growth axis from the external shell surface. From this shell we also collected shell powder for δ<sup>18</sup>O<sub>shell</sub> and δ<sup>13</sup>C<sub>shell</sub> analysis to enable placing δ<sup>15</sup>N<sub>CBOM</sub> into temporal context. Isotope samples were analyzed Union College on an elemental analyzer - isotope ratio mass spectrometer.</p><p>Results indicate significant differences in δ<sup>15</sup>N<sub>CBOM</sub> between sampling localities, with lowest values recorded for shells from Pag Bay (3.73±0.36‰), and highest for shells sampled in Lim channel (7.04±0.63‰). High-resolution δ<sup>15</sup>N<sub>CBOM</sub> data obtained from the shell collected from Kaštela Bay corresponded to a time interval from spring 2018 to spring 2019. These data showed relatively small variations (5.02±0.33‰). However, δ<sup>15</sup>N<sub>CBOM</sub> values increased to 8.65±1.61‰ closest to the shell margin, and were coupled with a decrease in δ<sup>13</sup>C<sub>shell</sub> values, indicating that this animal was experiencing stressful conditions several months prior to its death. According to our findings, δ<sup>15</sup>N<sub>CBOM</sub> values serve as an indicator of the isotopic baseline of the ecosystem as well as a potential powerful tool to study bivalve physiology.</p><p>Research was the supported by the Croatian Science Foundation, research project BivACME.</p>


2020 ◽  
Vol 47 (4) ◽  
pp. 2551-2559 ◽  
Author(s):  
Claire Peyran ◽  
Serge Planes ◽  
Nathalie Tolou ◽  
Guillaume Iwankow ◽  
Emilie Boissin

2019 ◽  
Vol 164 ◽  
pp. 32-37 ◽  
Author(s):  
Rossella Panarese ◽  
Perla Tedesco ◽  
Giovanni Chimienti ◽  
Maria Stefania Latrofa ◽  
Francesco Quaglio ◽  
...  
Keyword(s):  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Miguel Cabanellas-Reboredo ◽  
Maite Vázquez-Luis ◽  
Baptiste Mourre ◽  
Elvira Álvarez ◽  
Salud Deudero ◽  
...  

Abstract A mass mortality event is devastating the populations of the endemic bivalve Pinna nobilis in the Mediterranean Sea from early autumn 2016. A newly described Haplosporidian endoparasite (Haplosporidium pinnae) is the most probable cause of this ecological catastrophe placing one of the largest bivalves of the world on the brink of extinction. As a pivotal step towards Pinna nobilis conservation, this contribution combines scientists and citizens’ data to address the fast- and vast-dispersion and prevalence outbreaks of the pathogen. Therefore, the potential role of currents on parasite expansion was addressed by means of drift simulations of virtual particles in a high-resolution regional currents model. A generalized additive model was implemented to test if environmental factors could modulate the infection of Pinna nobilis populations. The results strongly suggest that the parasite has probably dispersed regionally by surface currents, and that the disease expression seems to be closely related to temperatures above 13.5 °C and to a salinity range between 36.5–39.7 psu. The most likely spread of the disease along the Mediterranean basin associated with scattered survival spots and very few survivors (potentially resistant individuals), point to a challenging scenario for conservation of the emblematic Pinna nobilis, which will require fast and strategic management measures and should make use of the essential role citizen science projects can play.


Hydrobiologia ◽  
2011 ◽  
Vol 678 (1) ◽  
pp. 99-111 ◽  
Author(s):  
Lotfi Rabaoui ◽  
Randa Mejri ◽  
Sabiha Tlig-Zouari ◽  
Lilia Bahri ◽  
Oum Kalthoum Ben Hassine ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document