ANN based Transformerless UPFC for Effective Power Flow Control

Author(s):  
V L Vennela and Dr. S N V Ganesh

This paper focus on specially designed ANFIS based Power Quality Conditioner for Micro Grid applications. Three leg inverter coupled with solar PV with MPPT used as Compensator can be used for distinct DGs in the micro grid for power quality improvement of the entire system. Optimum control can be achieved to avoid detraction for voltage, current and Power flowing between Grid and DG. The Power Quality conditioner and DG inverter have dual use for this particular purpose. Primarily used as power converter for injecting power created from DG to Grid, secondly performed as parallel Active Power Filter for compensating harmonics, unbalanced voltage, current, active and reactive power demand for the balance and unbalance burden with in the Grid and neutral conductors. This paper is extended with ANN Controller for better improvement of Power Quality. The above mentioned task extensively simulated under MATLAB/Simulink platform revels that soon after compensation the THD

Author(s):  
Kongathi Sivaram , P Ankineedu Prasad

This paper focus on specially designed ANFIS based Power Quality Conditioner for Micro Grid applications. Three leg inverter coupled with solar PV with MPPT used as Compensator can be used for distinct DGs in the micro grid for power quality improvement of the entire system. Optimum control can be achieved to avoid detraction for voltage, current and Power flowing between Grid and DG. The Power Quality conditioner and DG inverter have dual use for this particular purpose. Primarily used as power converter for injecting power created from DG to Grid, secondly performed as parallel Active Power Filter for compensating harmonics, unbalanced voltage, current, active and reactive power demand for the balance and unbalance burden with in the Grid and neutral conductors. This paper is extended with ANFIS Controller for better improvement of Power Quality. The above mentioned task extensively simulated under MATLAB/Simulink platform revels that soon after compensation the THD.


2018 ◽  
Vol 7 (2.32) ◽  
pp. 245
Author(s):  
Chandra Sekhar Mishra ◽  
Ranjan Kumar Jena ◽  
Soumya Ranjan Nayak

DG Grid interfaced system has been focused through this paper. The objective is to improve power quality of the grid, which was polluted by various means. The improvement of power quality of the micro grid includes uses of a specially designed DG, BESS and Power Quality conditioner. The system consists of a two-stage power conversion. Solar PV supplies power for both DC and AC loads. Manufacturer datasheet is used for modeling the PV panel. In order to keep the BUS voltage stable a BESS is joined to DC BUS through power electronic converter, which is used to absorb the excess power whenever production is high and deliver power to the load on low production. The system continues to supply the local loads, incase of grid discontinuity. Thus it eliminates threats of islanding. This paper also focuses on control and stability of DC bus voltage and energy management scheme. The project uses Matlab/Simulink platform for efficient verification. For power quality improvement of Micro Grid it uses 3leg inverter, which is coupled with SPV and MPPT with Battery storage, which is used as compensator for the whole system. For prevention to reduce voltage current and power flow between DG and Grid, it is necessary to have an optimum control. Through the adjustment of power circulation between shunt paired DG ensures current voltage and power on micro grid. +ve, -ve and Zero sequence components of currents and voltage can be adjusted   by the suggested methodology in Grid tied DG system. The said PQC have multiple uses. Firstly as a power converter and secondly as a shunt APF for harmonic compensation on voltage, current and power (both active and reactive) for both balanced and unbalanced loads in the Grid tied DG system. It also cares for the neutral conductor. Either individually or in grid connected mode all the above objectives can be achieved. For the entire Grid, it is realized that after compensation three phase four wired un-balance loads looks as balanced linear resistive load for the Grid. All these task significantly replicated on MATLAB/Simulink. After compensation the total harmonic distortion on input voltage and current reduced drastically. IEEE519 in the range of 5% suitably accepts it.  


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5812
Author(s):  
Ch. Rami Reddy ◽  
B. Srikanth Goud ◽  
Flah Aymen ◽  
Gundala Srinivasa Rao ◽  
Edson C. Bortoni

An intelligent control strategy is proposed in this paper which suggests the Optimum Power Quality Enhancement (OPQE) of grid-connected hybrid power systems with solar photovoltaic, wind turbines, and battery storage. Unified Power Quality Conditioner with Active and Reactive power (UPQC-PQ) is designed with Atom Search Optimization (ASO) based Fractional-order Proportional Integral Derivative (FOPID) controller in the proposed Hybrid Renewable Energy Sources (HRES) system. The main aim is to regulate voltage while reducing power loss and reducing Total Harmonic Distortion (THD). UPQC-PQ is used to mitigate the Power Quality (PQ) problems such as sag, swell, interruptions, real power, reactive power and THD reductions related to voltage /current by using ASO based FOPID controller. The developed technique is demonstrated in various modes: simultaneous to improve PQ reinforcement and RES power injection, PRES > 0, PRES = 0. The results are then compared to those obtained using previous literature methods such as PI controller, GSA, BBO, GWO, ESA, RFA, and GA and found the proposed approach is efficient. The MATLAB/Simulink work framework is used to create the model.


Sign in / Sign up

Export Citation Format

Share Document