scholarly journals Structural Interpretation of Yamama and Naokelekan Formations in Tuba Oil Field Using 2D Seismic Data

2021 ◽  
Vol 54 (2B) ◽  
pp. 55-64
Author(s):  
Belal M. Odeh

This research includes structure interpretation of the Yamama Formation (Lower Cretaceous) and the Naokelekan Formation (Jurassic) using 2D seismic reflection data of the Tuba oil field region, Basrah, southern Iraq. The two reflectors (Yamama and Naokelekan) were defined and picked as peak and tough depending on the 2D seismic reflection interpretation process, based on the synthetic seismogram and well log data. In order to obtain structural settings, these horizons were followed over all the regions. Two-way travel-time maps, depth maps, and velocity maps have been produced for top Yamama and top Naokelekan formations. The study concluded that certain longitudinal enclosures reflect anticlines in the east and west of the study area representing Zubair and Rumaila fold confined between them a fold consist of two domes represents Tuba fold with the same trending of Zubair and Rumaila structures. The study confirmed the importance of this field as a reservoir of the accumulation of hydrocarbons.

2020 ◽  
pp. 3024-3035
Author(s):  
Kamal K. Ali ◽  
Gassak F. Kadhim

This study includes structural and stratigraphic interpretation of 3D seismic reflection data for Zubair Formation (L. Cretaceous) within Al-Akhadeir area, southwestern Iraq (Karbala Governorate). Depending on the 3D seismic reflection interpretation process, and based on the synthetic seismogram  and well logs data, two horizons were identified and selected (top and base Zubair  reflectors). These horizons were followed up over the entire area in order to obtain structural and stratigraphic settings. TWT, depth, and velocity maps for the base and top Zubair Formation were constructed. From the interpretation of these maps and based on the seismic section, the study concluded that there are some enclosures that represent anticline in the NW of the horizon and syncline in the NE, while the nose structure appears in the middle of the horizon and trends N-S. The horizon represents a progradational with sigmoid configuration.. Other seismic structural phenomena were recognized in this part of the area, such as flat spot, down lap, and top lap, which give indicators of potential hydrocarbon accumulations


Solid Earth ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 1651-1662 ◽  
Author(s):  
Juan Alcalde ◽  
Clare E. Bond ◽  
Gareth Johnson ◽  
Armelle Kloppenburg ◽  
Oriol Ferrer ◽  
...  

Abstract. The use of conceptual models is essential in the interpretation of reflection seismic data. It allows interpreters to make geological sense of seismic data, which carries inherent uncertainty. However, conceptual models can create powerful anchors that prevent interpreters from reassessing and adapting their interpretations as part of the interpretation process, which can subsequently lead to flawed or erroneous outcomes. It is therefore critical to understand how conceptual models are generated and applied to reduce unwanted effects in interpretation results. Here we have tested how interpretation of vertically exaggerated seismic data influenced the creation and adoption of the conceptual models of 161 participants in a paper-based interpretation experiment. Participants were asked to interpret a series of faults and a horizon, offset by those faults, in a seismic section. The seismic section was randomly presented to the participants with different horizontal–vertical exaggeration (1:4 or 1:2). Statistical analysis of the results indicates that early anchoring to specific conceptual models had the most impact on interpretation outcome, with the degree of vertical exaggeration having a subdued influence. Three different conceptual models were adopted by participants, constrained by initial observations of the seismic data. Interpreted fault dip angles show no evidence of other constraints (e.g. from the application of accepted fault dip models). Our results provide evidence of biases in interpretation of uncertain geological and geophysical data, including the use of heuristics to form initial conceptual models and anchoring to these models, confirming the need for increased understanding and mitigation of these biases to improve interpretation outcomes.


2018 ◽  
Vol 123 (12) ◽  
pp. 10,810-10,830
Author(s):  
Michael Dentith ◽  
Huaiyu Yuan ◽  
Ruth Elaine Murdie ◽  
Perla Pina-Varas ◽  
Simon P. Johnson ◽  
...  

2021 ◽  
Author(s):  
Piotr Krzywiec ◽  
Łukasz Słonka ◽  
Quang Nguyen ◽  
Michał Malinowski ◽  
Mateusz Kufrasa ◽  
...  

<p>In 2016, approximately 850 km of high-resolution multichannel seismic reflection data of the BALTEC survey have been acquired offshore Poland within the transition zone between the East European Craton and the Paleozoic Platform. Data processing, focused on removal of multiples, strongly overprinting geological information at shallower intervals, included SRME, TAU-P domain deconvolution, high resolution parabolic Radon demultiple and SWDM (Shallow Water De-Multiple). Entire dataset was Kirchhoff pre-stack time migrated. Additionally, legacy shallow high-resolution multichannel seismic reflection data acquired in this zone in 1997 was also used. All this data provided new information on various aspects of the Phanerozoic evolution of this area, including Late Cretaceous to Cenozoic tectonics and sedimentation. This phase of geological evolution could be until now hardly resolved by analysis of industry seismic data as, due to limited shallow seismic imaging and very strong overprint of multiples, essentially no information could have been retrieved from this data for first 200-300 m. Western part of the BALTEC dataset is located above the offshore segment of the Mid-Polish Swell (MPS) – large anticlinorium formed due to inversion of the axial part of the Polish Basin. BALTEC seismic data proved that Late Cretaceous inversion of the Koszalin – Chojnice fault zone located along the NE border of the MPS was thick-skinned in nature and was associated with substantial syn-inversion sedimentation. Subtle thickness variations and progressive unconformities imaged by BALTEC seismic data within the Upper Cretaceous succession in vicinity of the Kamień-Adler and the Trzebiatów fault zones located within the MPS documented complex interplay of Late Cretaceous basin inversion, erosion and re-deposition. Precambrian basement of the Eastern, cratonic part of the study area is overlain by Cambro-Silurian sedimentary cover. It is dissected by a system of steep, mostly reverse faults rooted in most cases in the deep basement. This fault system has been regarded so far as having been formed mostly in Paleozoic times, due to the Caledonian orogeny. As a consequence, Upper Cretaceous succession, locally present in this area, has been vaguely defined as a post-tectonic cover, locally onlapping uplifted Paleozoic blocks. New seismic data, because of its reliable imaging of the shallowest substratum, confirmed that at least some of these deeply-rooted faults were active as a reverse faults in latest Cretaceous – earliest Paleogene. Consequently, it can be unequivocally proved that large offshore blocks of Silurian and older rocks presently located directly beneath the Cenozoic veneer must have been at least partly covered by the Upper Cretaceous succession; then, they were uplifted during the widespread inversion that affected most of Europe. Ensuing regional erosion might have at least partly provided sediments that formed Upper Cretaceous progradational wedges recently imaged within the onshore Baltic Basin by high-end PolandSPAN regional seismic data. New seismic data imaged also Paleogene and younger post-inversion cover. All these results prove that Late Cretaceous tectonics substantially affected large areas located much farther towards the East than previously assumed.</p><p>This study was funded by the Polish National Science Centre (NCN) grant no UMO-2017/27/B/ST10/02316.</p>


Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. R31-R41 ◽  
Author(s):  
Andrea Zunino ◽  
Klaus Mosegaard ◽  
Katrine Lange ◽  
Yulia Melnikova ◽  
Thomas Mejer Hansen

Determination of a petroleum reservoir structure and rock bulk properties relies extensively on inference from reflection seismology. However, classic deterministic methods to invert seismic data for reservoir properties suffer from some limitations, among which are the difficulty of handling complex, possibly nonlinear forward models, and the lack of robust uncertainty estimations. To overcome these limitations, we studied a methodology to invert seismic reflection data in the framework of the probabilistic approach to inverse problems, using a Markov chain Monte Carlo (McMC) algorithm with the goal to directly infer the rock facies and porosity of a target reservoir zone. We thus combined a rock-physics model with seismic data in a single inversion algorithm. For large data sets, the McMC method may become computationally impractical, so we relied on multiple-point-based a priori information to quantify geologically plausible models. We tested this methodology on a synthetic reservoir model. The solution of the inverse problem was then represented by a collection of facies and porosity reservoir models, which were samples of the posterior distribution. The final product included probability maps of the reservoir properties in obtained by performing statistical analysis on the collection of solutions.


2014 ◽  
Vol 2 (1) ◽  
pp. SA151-SA162 ◽  
Author(s):  
John H. McBride ◽  
R. William Keach ◽  
Eugene E. Wolfe ◽  
Hannes E. Leetaru ◽  
Clayton K. Chandler ◽  
...  

Because the confinement of [Formula: see text] in a storage reservoir depends on a stratigraphically continuous set of seals to isolate the fluid in the reservoir, the detection of structural anomalies is critical for guiding any assessment of a potential subsurface carbon storage site. Employing a suite of 3D seismic attribute analyses (as opposed to relying upon a single attribute) maximizes the chances of identifying geologic anomalies or discontinuities (e.g., faults) that may affect the integrity of a seal that will confine the stored [Formula: see text] in the reservoir. The Illinois Basin, a major area for potential carbon storage, presents challenges for target assessment because geologic anomalies can be ambiguous and easily misinterpreted when using 2D seismic reflection data, or even 3D data, if only conventional display techniques are used. We procured a small 3D seismic reflection data set in the central part of the basin (Stewardson oil field) to experiment with different strategies for enhancing the appearance of discontinuities by integrating 3D seismic attribute analyses with conventional visualizations. Focusing on zones above and below the target interval of the Cambrian Mt. Simon Sandstone, we computed attribute traveltime slices (combined with vertical views) based on discontinuity computations, crossline-directed amplitude change, azimuth of the dip, shaded relief, and fault likelihood attributes. The results provided instructive examples of how discontinuities (e.g., subseismic scale faults) may be almost “invisible” on conventional displays but become detectable and mappable using an appropriate integration of 3D attributes. Strong discontinuities in underlying Precambrian basement rocks do not necessarily propagate upward into the target carbon storage interval. The origin of these discontinuities is uncertain, but we explored a possible strike-slip role that also explains the localization of a structural embayment developed in Lower Paleozoic strata above the basement discontinuities.


Geophysics ◽  
1993 ◽  
Vol 58 (3) ◽  
pp. 419-428 ◽  
Author(s):  
Arthur E. Barnes

Fourier power spectra are often usefully characterized by average measures. In reflection seismology, the important average measures are center frequency, spectral bandwidth, and dominant frequency. These quantities have definitions familiar from probability theory: center frequency is the spectral mean, spectral bandwidth is the standard deviation about that mean, and dominant frequency is the square root of the second moment, which serves as an estimate of the zero‐crossing frequency. These measures suggest counterparts defined with instantaneous power spectra in place of Fourier power spectra, so that they are instantaneous in time though they represent averages in frequency. Intuitively reasonable requirements yield specific forms for these instantaneous quantities that can be computed with familiar complex seismic trace attributes. Instantaneous center frequency is just instantaneous frequency. Instantaneous bandwidth is the absolute value of the derivative of the instantaneous amplitude divided by the instantaneous amplitude. Instantaneous dominant frequency is the square root of the sum of the squares of the instantaneous frequency and instantaneous bandwidth. Instantaneous bandwidth and dominant frequency find employment as additional complex seismic trace attributes in the detailed study of seismic data. Instantaneous bandwidth is observed to be nearly always less than instantaneous frequency; the points where it is larger may mark the onset of distinct wavelets. These attributes, together with instantaneous frequency, are perhaps, of greater use in revealing the time‐varying spectral properties of seismic data. They can help in the search for low frequency shadows or in the analysis of frequency change due to effects of data processing. Instantaneous bandwidth and dominant frequency complement instantaneous frequency and should find wide application in the analysis of seismic reflection data.


2021 ◽  
Author(s):  
Ramon Carbonell ◽  
Yesenia Martinez ◽  
Irene de Felipe ◽  
Juan Alcalde ◽  
Imma Palomeras ◽  
...  

<p><span>Hardware and software innovations taking place since the commercial development of seismic reflection imaging in the 60’s and early 70’s have resulted in various improved powerful seismic imaging solutions. Overall, these have been very successful in contrasting geological environments pursuing a wide variety of different targets. The innovative advances in seismic processing may constitute critical tools when analyzing seismic data acquired in highly heterogeneous geologic environments as they can efficiently increase the resolution power. In addition, they can become relevant when using modern acquisition instrumentation and strategies. Furthermore, these new developments significantly increase the value of legacy seismic reflection data. Currently, reassessing controlled source seismic data is becoming a critical issue mostly due to the increasing difficulties for acquiring new profiles posed by environmental regulations and high prices. However, the knowledge of the subsurface is an asset for our society, for example: </span><span><span>land-use planning and management; natural risk assessments; or exploration and exploitation for geo-resources. Here we present examples of analysis schemes such as seismic attribute analysis and Common Reflection Surface stacking applied on a number of old seismic reflection profiles (Deep lithospheric transects as well as high resolution profiles) in an effort to bring up their validity. Results indicate how these leading edge methods contribute to significantly improve the quality of vintage seismic data, significantly reducing reflector uncertainties and easing their interpretation. </span></span></p><p><span><span>This research is supported by: Generalitat de Catalunya (AGAUR) grant 2017SGR1022 (GREG); EU (H2020) 871121 (EPOS-SP); EIT-RaewMaterias 17024 (SIT4ME). </span></span></p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document