Statistical Evaluation of Emerging Feature Extraction Techniques for Aging-Invariant Face Recognition Systems
Large variation in facial appearances of the same individual makes most baseline Aging-Invariant Face Recognition Systems (AI-FRS) suffer from high automatic misclassification of faces. However, some Aging-Invariant Feature Extraction Techniques (AI-FET) for AI-FRS are emerging to help achieve good recognition results when compared to some baseline transformations in conditions with large amount of variations in facial texture and shape. However, the performance results of these AI-FET need to be further investigated statistically to avoid being misled. Statistical significance test can be used to logically justify such performance claims. The statistical significance test would serve as a decision rule to determine the degree of acceptability of the probability to make a wrong decision should such performance claims be found faulty. In this paper, the means between the quantitative results of emerging AI-FET (Histogram of Gradient (HoG), Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA) and Local Binary Pattern-Gabor Wavelet Transform (LBP-GWT)) and the baseline aging-invariant techniques (Local Binary Pattern (LBP) and Gabor Wavelet Transform (GWT)) were computed and compared to determine if those means are statistically significantly different from each other using one-way Analysis of Variance (ANOVA). The ANOVA results obtained at 0.05 critical significance level indicate that the results of the emerging AI-FET techniques are not statistically significantly different from those of baseline techniques because the F-critical value was found to be greater than the value of the calculated F-statistics in all the evaluations conducted.