speeded up robust features
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 115)

H-INDEX

14
(FIVE YEARS 3)

Author(s):  
Ahmed Chater ◽  
Hicham Benradi ◽  
Abdelali Lasfar

<span>The purpose of determining the fundamental matrix (F) is to define the epipolar geometry and to relate two 2D images of the same scene or video series to find the 3D scenes. The problem we address in this work is the estimation of the localization error and the processing time. We start by comparing the following feature extraction techniques: Harris, features from accelerated segment test (FAST), scale invariant feature transform (SIFT) and speed-up robust features (SURF) with respect to the number of detected points and correct matches by different changes in images. Then, we merged the best chosen by the objective function, which groups the descriptors by different regions in order to calculate ‘F’. Then, we applied the standardized eight-point algorithm which also automatically eliminates the outliers to find the optimal solution ‘F’. The test of our optimization approach is applied on the real images with different scene variations. Our simulation results provided good results in terms of accuracy and the computation time of ‘F’ does not exceed 900 ms, as well as the projection error of maximum 1 pixel, regardless of the modification.</span>


Drones ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 23
Author(s):  
Tong Zhang ◽  
Chunjiang Liu ◽  
Jiaqi Li ◽  
Minghui Pang ◽  
Mingang Wang

In view of traditional point-line feature visual inertial simultaneous localization and mapping (SLAM) system, which has weak performance in accuracy so that it cannot be processed in real time under the condition of weak indoor texture and light and shade change, this paper proposes an inertial SLAM method based on point-line vision for indoor weak texture and illumination. Firstly, based on Bilateral Filtering, we apply the Speeded Up Robust Features (SURF) point feature extraction and Fast Nearest neighbor (FLANN) algorithms to improve the robustness of point feature extraction result. Secondly, we establish a minimum density threshold and length suppression parameter selection strategy of line feature, and take the geometric constraint line feature matching into consideration to improve the efficiency of processing line feature. And the parameters and biases of visual inertia are initialized based on maximum posterior estimation method. Finally, the simulation experiments are compared with the traditional tightly-coupled monocular visual–inertial odometry using point and line features (PL-VIO) algorithm. The simulation results demonstrate that the proposed an inertial SLAM method based on point-line vision for indoor weak texture and illumination can be effectively operated in real time, and its positioning accuracy is 22% higher on average and 40% higher in the scenario that illumination changes and blurred image.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Rabbia Mahum ◽  
Saeed Ur Rehman ◽  
Ofonime Dominic Okon ◽  
Amerah Alabrah ◽  
Talha Meraj ◽  
...  

Glaucoma is one of the eye diseases stimulated by the fluid pressure that increases in the eyes, damaging the optic nerves and causing partial or complete vision loss. As Glaucoma appears in later stages and it is a slow disease, detailed screening and detection of the retinal images is required to avoid vision forfeiture. This study aims to detect glaucoma at early stages with the help of deep learning-based feature extraction. Retinal fundus images are utilized for the training and testing of our proposed model. In the first step, images are pre-processed, before the region of interest (ROI) is extracted employing segmentation. Then, features of the optic disc (OD) are extracted from the images containing optic cup (OC) utilizing the hybrid features descriptors, i.e., convolutional neural network (CNN), local binary patterns (LBP), histogram of oriented gradients (HOG), and speeded up robust features (SURF). Moreover, low-level features are extracted using HOG, whereas texture features are extracted using the LBP and SURF descriptors. Furthermore, high-level features are computed using CNN. Additionally, we have employed a feature selection and ranking technique, i.e., the MR-MR method, to select the most representative features. In the end, multi-class classifiers, i.e., support vector machine (SVM), random forest (RF), and K-nearest neighbor (KNN), are employed for the classification of fundus images as healthy or diseased. To assess the performance of the proposed system, various experiments have been performed using combinations of the aforementioned algorithms that show the proposed model based on the RF algorithm with HOG, CNN, LBP, and SURF feature descriptors, providing <=99% accuracy on benchmark datasets and 98.8% on k-fold cross-validation for the early detection of glaucoma.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8493
Author(s):  
Mengnan Liu ◽  
Yu Han ◽  
Xiaoqi Xi ◽  
Siyu Tan ◽  
Jian Chen ◽  
...  

Thermal drift of nano-computed tomography (CT) adversely affects the accurate reconstruction of objects. However, feature-based reference scan correction methods are sometimes unstable for images with similar texture and low contrast. In this study, based on the geometric position of features and the structural similarity (SSIM) of projections, a rough-to-refined rigid alignment method is proposed to align the projection. Using the proposed method, the thermal drift artifacts in reconstructed slices are reduced. Firstly, the initial features are obtained by speeded up robust features (SURF). Then, the outliers are roughly eliminated by the geometric position of global features. The features are refined by the SSIM between the main and reference projections. Subsequently, the SSIM between the neighborhood images of features are used to relocate the features. Finally, the new features are used to align the projections. The two-dimensional (2D) transmission imaging experiments reveal that the proposed method provides more accurate and robust results than the random sample consensus (RANSAC) and locality preserving matching (LPM) methods. For three-dimensional (3D) imaging correction, the proposed method is compared with the commonly used enhanced correlation coefficient (ECC) method and single-step discrete Fourier transform (DFT) algorithm. The results reveal that proposed method can retain the details more faithfully.


2021 ◽  
pp. 1-7
Author(s):  
Minhui Yu ◽  
Mei Sang ◽  
Cheng Guo ◽  
Ruifeng Zhang ◽  
Fan Zhao ◽  
...  

Abstract A high-frequency short-pulsed stroboscopic micro-visual system was employed to capture the transient image sequences of a periodically in-plane working micro-electro-mechanical system (MEMS) devices. To demodulate the motion parameters of the devices from the images, we developed the feature point matching (FPM) algorithm based on Speeded-Up Robust Features (SURF). A MEMS gyroscope, vibrating at a frequency of 8.189 kHz, was used as a testing sample to evaluate the performance of the proposed algorithm. Within the same processing time, the SURF-based FPM method demodulated the velocity of the in-plane motion with a precision of 10−5 pixels of the image, which was two orders of magnitude higher than the template-matching and frame-difference algorithms.


2021 ◽  
Vol 9 (12) ◽  
pp. 1357
Author(s):  
Qinglian Hou ◽  
Cheng Zhou ◽  
Rong Wan ◽  
Junbo Zhang ◽  
Feng Xue

Tuna fish school detection provides information on the fishing decisions of purse seine fleets. Here, we present a recognition system that included fish shoal image acquisition, point extraction, point matching, and data storage. Points are a crucial characteristic for images of free-swimming tuna schools, and point algorithm analysis and point matching were studied for their applications in fish shoal recognition. The feature points were obtained by using one of the best point algorithms (scale invariant feature transform, speeded up robust features, oriented fast and rotated brief). The k-nearest neighbors (KNN) algorithm uses ‘feature similarity’ to predict the values of new points, which means that new data points will be assigned a value based on how closely they match the points that exist in the database. Finally, we tested the model, and the experimental results show that the proposed method can accurately and effectively recognize tuna free-swimming schools.


2021 ◽  
Vol 13 (11) ◽  
pp. 168781402110609
Author(s):  
Amine Mahami ◽  
Chemseddine Rahmoune ◽  
Toufik Bettahar ◽  
Djamel Benazzouz

In this paper, a novel noncontact and nonintrusive framework experimental method is used for the monitoring and the diagnosis of a three phase’s induction motor faults based on an infrared thermography technique (IRT). The basic structure of this work begins with this applying IRT to obtain a thermograph of the considered machine. Then, bag-of-visual-word (BoVW) is used to extract the fault features with Speeded-Up Robust Features (SURF) detector and descriptor from the IRT images. Finally, various faults patterns in the induction motor are automatically identified using an ensemble learning called Extremely Randomized Tree (ERT). The proposed method effectiveness is evaluated based on the experimental IRT images, and the diagnosis results show its capacity and that it can be considered as a powerful diagnostic tool with a high classification accuracy and stability compared to other previously used methods.


Sign in / Sign up

Export Citation Format

Share Document