scholarly journals FOCUSING OF POSITRON BUNCH WHEN MOVING IN ELECTRON BUNCH WAKEFIELD IN THE DIELECTRIC WAVEGUIDE FILLED WITH PLASMA

2021 ◽  
pp. 49-54
Author(s):  
G.V. Sotnikov ◽  
R.R. Knyazev ◽  
P.I. Markov ◽  
I.N. Onishchenko

The results of numerical PIC-simulation of focusing accelerated (test) positron and drive electron bunches in the dielectric waveguide filled with radially heterogeneous plasma with the vacuum channel are given in the paper. The wakefield was excited by electron bunch in quartz dielectric tube, inserted into cylindrical metal waveguide. The internal area of dielectric tube has been filled with plasma different transverse density profiles, heterogeneous on radius, with the vacuum channel along waveguide axis. Plasma density for all studied cases was so low that plasma frequency was less, than the frequency of the main dielectric mode. Results of numerical PIC simulation have shown that possibility of simultaneous acceleration and focusing of the test positron bunch are possible in the wakefield. The best acceleration happens in case of plasma absence, however at that there is no focusing of test positron bunch.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mikhail Veysman

It is shown that the dynamics of electrons accelerated in narrow capillary waveguides is significantly influenced by the parametric excitation of their betatron oscillations. On the one hand, this excitation can irreversibly spoil the emittance of an accelerated electron bunch that limits the possibilities of their practical use. On the other hand, controlled parametric excitation of betatron oscillations can be used to generate short-pulse sources of synchrotron radiation. The article analyzes the regions of parametric instabilities, their dependence on the parameters of accelerated electron bunches and guiding structures, and their influence on the dynamics of accelerated electrons. The parameters of the generated synchrotron radiation are also estimated. Measurements of the spectral parameters of synchrotron radiation can serve as a tool for diagnostics of betatron oscillations and their excitation in the case of parametric resonances.


2010 ◽  
Vol 35 (23) ◽  
pp. 4012 ◽  
Author(s):  
Ruei-Cheng Shiu ◽  
Yung-Chiang Lan ◽  
Chin-Min Chen

2012 ◽  
Vol 57 (5) ◽  
pp. 683-692 ◽  
Author(s):  
S. S. Baturin ◽  
I. L. Sheinman ◽  
A. M. Altmark ◽  
A. D. Kanareikin

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7523
Author(s):  
Daniel Söderström ◽  
Heikki Kettunen ◽  
Adriana Morana ◽  
Arto Javanainen ◽  
Youcef Ouerdane ◽  
...  

Radiation-induced emission of doped sol-gel silica glass samples was investigated under a pulsed 20-MeV electron beam. The studied samples were drawn rods doped with cerium, copper, or gadolinium ions, which were connected to multimode pure-silica core fibers to transport the induced luminescence from the irradiation area to a signal readout system. The luminescence pulses in the samples induced by the electron bunches were studied as a function of deposited dose per electron bunch. All the investigated samples were found to have a linear response in terms of luminescence as a function of electron bunch sizes between 10−5 Gy/bunch and 1.5×10−2 Gy/bunch. The presented results show that these types of doped silica rods can be used for monitoring a pulsed electron beam, as well as to evaluate the dose deposited by the individual electron bunches. The electron accelerator used in the experiment was a medical type used for radiation therapy treatments, and these silica rod samples show high potential for dosimetry in radiotherapy contexts.


Sign in / Sign up

Export Citation Format

Share Document