pure silica
Recently Published Documents


TOTAL DOCUMENTS

644
(FIVE YEARS 112)

H-INDEX

49
(FIVE YEARS 7)

2022 ◽  
Vol 961 (1) ◽  
pp. 012020
Author(s):  
Haneen Majed Saheb ◽  
Elham Kadhim Hilal ◽  
Kasim Mohammed Hello

Abstract Using agrowaste as a source of recycled materials is a hot topic among experts and technologists these days. Waste materials can be converted into energy and new products by using them. As a rice waste, rice husk (RH) is a rich source of pure silica that is recyclable. The pure silica in RH was sulfonated by agitating and reacting it with diluted sulfuric acid. Various sulfate concentrations were loaded on silica (5, 10, 15, and 20%), andthe catalyst was designated as RHASO4. As the sulfate content increased, the specific surface area decreased. TEM analysis showed different forms of catalyst, including spherical, cylindrical, and fibbered forms. The catalyst was used for the in-situ generation of nitrose acid to prepare a diazonium salt for aromatic coupling reactions. Our experiment indicates that azo dyes can be produced at 68 percent over the catalyst at 10 degrees Celsius, while traditional catalysts cannot produce them above 5 degrees Celsius. For the highest yield of azo dyes, a 20% sulfate loading is optimum. A simple laboratory procedure is followed to reuse a catalyst without deteriorating its properties.


Author(s):  
Zhenrui Mi ◽  
Tingting Lu ◽  
Jia-Nan Zhang ◽  
Ruren Xu ◽  
Wenfu Yan
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7682
Author(s):  
Giuseppe Mattia Lo Piccolo ◽  
Marco Cannas ◽  
Simonpietro Agnello

Due to its unique properties, amorphous silicon dioxide (a-SiO2) or silica is a key material in many technological fields, such as high-power laser systems, telecommunications, and fiber optics. In recent years, major efforts have been made in the development of highly transparent glasses, able to resist ionizing and non-ionizing radiation. However the widespread application of many silica-based technologies, particularly silica optical fibers, is still limited by the radiation-induced formation of point defects, which decrease their durability and transmission efficiency. Although this aspect has been widely investigated, the optical properties of certain defects and the correlation between their formation dynamics and the structure of the pristine glass remains an open issue. For this reason, it is of paramount importance to gain a deeper understanding of the structure–reactivity relationship in a-SiO2 for the prediction of the optical properties of a glass based on its manufacturing parameters, and the realization of more efficient devices. To this end, we here report on the state of the most important intrinsic point defects in pure silica, with a particular emphasis on their main spectroscopic features, their atomic structure, and the effects of their presence on the transmission properties of optical fibers.


2021 ◽  
Vol 2 (4) ◽  
pp. 670-685
Author(s):  
Karine Zanotti ◽  
Katerine Igal ◽  
María Belen Colombo Migliorero ◽  
Vânia Gomes Zuin ◽  
Patricia Graciela Vázquez

This study focused on the use of citrus bio-waste and obtention of silica-based materials through the sol-gel technique for promoting a greener and more sustainable catalysis. The sol-gel method is a versatile synthesis route characterized by the low temperatures the materials are synthesized in, which allows the incorporation of organic components. This method is carried out by acid or alkali hydrolysis combined with bio-waste, such as orange and lemon peels, generated as co-products in the food processing industry. The main objective was to obtain silica-based materials from the precursor TEOS with different catalysts—acetic, citric and hydro-chloric acids and ammonium hydroxide—adding different percentages of lemon and orange peels in order to find the influence of bio-waste on acids/alkali precursor hydrolysis. This was to partially replace these catalysts for orange or lemon peels. The solids obtained were characterized with different techniques, such as SEM, FT₋IR, potentiometric titration and XRD. SEM images were compared with pure silica obtained to contrast the morphology of the acidic and alkali hydrolysis. However, until now, few attempts have been made to highlight the renewability of reagents used in the synthesis or to incorporate bio-based catalytic processes on larger scales.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 926
Author(s):  
Gabriel Gama da Silva Figueiredo ◽  
Daishi Takayama ◽  
Katsunori Ishii ◽  
Mikihiro Nomura ◽  
Takamasa Onoki ◽  
...  

Thin pure-silica chabazite (Si-CHA) membranes have been synthesized by using a secondary growth method on a porous silica substrate. A CO2 permeance of 2.62 × 10−6 mol m−2 s−1 Pa−1 with a CO2/CH4 permeance ratio of 62 was obtained through a Si-CHA membrane crystallized for 8 h using a parent gel of H2O/SiO2 ratio of 4.6. The CO2 permeance through the Si-CHA membrane on a porous silica substrate was twice as high as that through the membrane synthesized on a porous alumina substrate, which displayed a similar zeolite layer thickness.


2021 ◽  
Author(s):  
◽  
Handayani Fraser

<p>Efforts to remove excess nitrate in the groundwater typically involves expensive ion-exchange membranes or slow reacting bio-reactors. Nano-sized zero valent iron (nZVI) has been used successfully to reduce nitrate into ammonia in various sites in USA and Europe. However, nZVI has a number of major setbacks associated with it, namely the tendency to agglomerate due to magnetic properties, and the possible toxicity due to the nano-sized material.  To circumvent these two setbacks, nZVI could be adsorbed onto solid support. In this research, geothermal sediment microsilicate 600 (Misi) was utilised as a support. Initial results suggested that Misi has potential as a support for nZVI, however modifications were required to improve the adsorbance of nZVI onto Misi surface. Calcination, activation, acid wash and iron oxyhydroxide coating were used as surface modifications for Misi. It was found that the two most important modifications for nZVI adsorption was calcination at either 400 or 600 °C and acid washing in 5.6 M HCl.  Equipped with this knowledge, other silica and silicates were also used to adsorb nZVI. For pure silica surfaces, 3-APTES and 3-TPTMS ligands and pore enlarging methods of calcination of porogen and salt wash were also used. nZVI was not able to be fully adsorbed on pure silica surfaces. Four other silicates were examined: Rice husk ash, Western Australia silica fume, Mt Piper fly ash, and precipitated aluminium silicate. Of these, only Western Australia silica fume and precipitated aluminium silicate showed potential as nZVI support. Based on the SEM-EDS XRD data of all the silica and silicates, it could be tentatively concluded that nZVI requires an aluminium silicate surface for successful adsorption. Aluminium silicate surfaces typically has an exchangeable cation present, and this cation might play a part in nZVI adsorption.  The nZVI/Misi surface was then utilised to reduce nitrate. It was discovered that even though activation and FeOOH did not play a part in nZVI adsorption onto Misi surface, these two steps were important in reduction of nitrate, as the presence of activation and FeOOH increase the reduction of nitrate significantly within 60 minutes. The Misi-supported nZVI were also shown to be more stable in dispersion, and less agglomerated as shown in a sand column experiment.</p>


2021 ◽  
Author(s):  
◽  
Handayani Fraser

<p>Efforts to remove excess nitrate in the groundwater typically involves expensive ion-exchange membranes or slow reacting bio-reactors. Nano-sized zero valent iron (nZVI) has been used successfully to reduce nitrate into ammonia in various sites in USA and Europe. However, nZVI has a number of major setbacks associated with it, namely the tendency to agglomerate due to magnetic properties, and the possible toxicity due to the nano-sized material.  To circumvent these two setbacks, nZVI could be adsorbed onto solid support. In this research, geothermal sediment microsilicate 600 (Misi) was utilised as a support. Initial results suggested that Misi has potential as a support for nZVI, however modifications were required to improve the adsorbance of nZVI onto Misi surface. Calcination, activation, acid wash and iron oxyhydroxide coating were used as surface modifications for Misi. It was found that the two most important modifications for nZVI adsorption was calcination at either 400 or 600 °C and acid washing in 5.6 M HCl.  Equipped with this knowledge, other silica and silicates were also used to adsorb nZVI. For pure silica surfaces, 3-APTES and 3-TPTMS ligands and pore enlarging methods of calcination of porogen and salt wash were also used. nZVI was not able to be fully adsorbed on pure silica surfaces. Four other silicates were examined: Rice husk ash, Western Australia silica fume, Mt Piper fly ash, and precipitated aluminium silicate. Of these, only Western Australia silica fume and precipitated aluminium silicate showed potential as nZVI support. Based on the SEM-EDS XRD data of all the silica and silicates, it could be tentatively concluded that nZVI requires an aluminium silicate surface for successful adsorption. Aluminium silicate surfaces typically has an exchangeable cation present, and this cation might play a part in nZVI adsorption.  The nZVI/Misi surface was then utilised to reduce nitrate. It was discovered that even though activation and FeOOH did not play a part in nZVI adsorption onto Misi surface, these two steps were important in reduction of nitrate, as the presence of activation and FeOOH increase the reduction of nitrate significantly within 60 minutes. The Misi-supported nZVI were also shown to be more stable in dispersion, and less agglomerated as shown in a sand column experiment.</p>


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7000
Author(s):  
Iftikhar Ahmed Channa ◽  
Aqeel Ahmed Shah ◽  
Muhammad Rizwan ◽  
Muhammad Atif Makhdoom ◽  
Ali Dad Chandio ◽  
...  

Silica is one of the most efficient gas barrier materials, and hence is widely used as an encapsulating material for electronic devices. In general, the processing of silica is carried out at high temperatures, i.e., around 1000 °C. Recently, processing of silica has been carried out from a polymer called Perhydropolysilazane (PHPS). The PHPS reacts with environmental moisture or oxygen and yields pure silica. This material has attracted many researchers and has been widely used in many applications such as encapsulation of organic light-emitting diodes (OLED) displays, semiconductor industries, and organic solar cells. In this paper, we have demonstrated the process optimization of the conversion of the PHPS into silica in terms of curing methods as well as curing the environment. Various curing methods including exposure to dry heat, damp heat, deep UV, and their combination under different environments were used to cure PHPS. FTIR analysis suggested that the quickest conversion method is the irradiation of PHPS with deep UV and simultaneous heating at 100 °C. Curing with this method yields a water permeation rate of 10−3 g/(m2⋅day) and oxygen permeation rate of less than 10−1 cm3/(m2·day·bar). Rapid curing at low-temperature processing along with barrier properties makes PHPS an ideal encapsulating material for organic solar cell devices and a variety of similar applications.


Author(s):  
Yanfeng Zhang ◽  
Haiyang Yu ◽  
Xiaoxue Tang ◽  
Xue Kong ◽  
Xing'ai Li ◽  
...  

Abstract Sapphire substrates with different orientations have wide applications due to their excellent physical, chemical and optical properties. However, the chemical mechanical polishing of sapphire is challenging due to its chemical inertness, extreme hardness and brittleness. Herein, chemical mechanical polishing of A- and C-plane sapphire was systematically studied using α-Al2O3 and silica abrasives and polishing mechanism was analyzed by X-ray photoemission spectroscopy (XPS) and nanoindentation meter. The high MRR selectivity for C-plane sapphire in α-Al2O3 slurry is the synergy of selective hydration of C-plane and stronger crystal structure of A-plane. The low MRR selectivity for C-plane sapphire in silica slurry can be attributed to the formation of Al2SiO5 on both planes which reduced the impact of strong mechanical effect of α-Al2O3 abrasives. To improve the MRR of A-plane sapphire, a new nanocomposite particle with alumina as the core and silica as the soft shell was prepared by an electrostatic self-assembly method. The new composite abrasives combined the mechanical effect of α-Al2O3 abrasives and chemical effect of silica abrasives and demonstrated substantially higher MRR for A-plane sapphire than pure alumina abrasives, pure silica abrasives and physical mixture of alumina+silica abrasives.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7523
Author(s):  
Daniel Söderström ◽  
Heikki Kettunen ◽  
Adriana Morana ◽  
Arto Javanainen ◽  
Youcef Ouerdane ◽  
...  

Radiation-induced emission of doped sol-gel silica glass samples was investigated under a pulsed 20-MeV electron beam. The studied samples were drawn rods doped with cerium, copper, or gadolinium ions, which were connected to multimode pure-silica core fibers to transport the induced luminescence from the irradiation area to a signal readout system. The luminescence pulses in the samples induced by the electron bunches were studied as a function of deposited dose per electron bunch. All the investigated samples were found to have a linear response in terms of luminescence as a function of electron bunch sizes between 10−5 Gy/bunch and 1.5×10−2 Gy/bunch. The presented results show that these types of doped silica rods can be used for monitoring a pulsed electron beam, as well as to evaluate the dose deposited by the individual electron bunches. The electron accelerator used in the experiment was a medical type used for radiation therapy treatments, and these silica rod samples show high potential for dosimetry in radiotherapy contexts.


Sign in / Sign up

Export Citation Format

Share Document