scholarly journals TRANSITION RADIATION OF A RELATIVISTIC ELECTRON BUNCH ON A SEMI-INFINITE METAL CYLINDER

2021 ◽  
pp. 103-106
Author(s):  
V.A. Balakirev ◽  
I.N. Onishchenko

Transition radiation of a relativistic electron bunch, which arises when it collides with the end face of a semi-infinite ideally conducting cylinder, is considered. An electron bunch moves along the axis of a semi-infinite cylin-der. Expressions for the field strength of electromagnetic radiation in the wave zone are obtained. The influence of the guiding properties of an ideally conducting cylinder on the directional diagram of the transition radiation is investigated.

2021 ◽  
pp. 96-101
Author(s):  
V.A. Balakirev ◽  
I.N. Onishchenko

Transition radiation of a relativistic electron bunch, which arises when it collides with the surface of an infinite perfectly conducting cylinder, is considered. The electron bunch moves perpendicular to the cylinder surface. Expressions for the field strength of electromagnetic radiation in the wave zone are obtained and investigated.


Author(s):  
Ndidi Stella Arinze ◽  
Patrick Uche Okafor ◽  
Osondu Ignatius Onah

On a global scale, the telecommunication industry is experiencing tremendous growth in mobile phones. Mobile phones communicate with base stations that are erected by the telecommunication industry. The base station produces radio frequency and exposes the people near the base stations to radiation. The effect of electromagnetic radiation from four base stations located at the residential area was studied by measuring their electric field strength and calculating their magnetic field strength and power density at different distances covering a frequency range of 900MHz to 2100MHz. The obtained values showed that the four cellular base stations are operating above the standard values of the International Commission on Non-Ionizing Radiation Protection Electromagnetic Field Radiation. The specific absorption rate was measured to determine the amount of radio frequency electromagnetic radiation absorbed by the human body. The result which is in the range of 3.22-3.70 W/kg is higher than the acceptable 2 W/kg for localized specific absorption rate.


1980 ◽  
Vol 35 (4) ◽  
pp. 461-463 ◽  
Author(s):  
O. M. Gradov ◽  
L. Stenflo

Abstract A beam of electromagnetic radiation can generate magnetic fields in plasmas. It is shown that those fields grow significantly when the incident radiation is sufficiently strong. We obtain expressions for the characteristic time of the growth of the fields as well as for their spatial distribution and point out a possible mechanism, which can lead to the formation of a quasi-stationary state. The maximum value of the magnetic field strength is estimated


Sign in / Sign up

Export Citation Format

Share Document