scholarly journals ON A SOLVABLE SYSTEM OF NON-LINEAR DIFFERENCE EQUATIONS WITH VARIABLE COEFFICIENTS

2021 ◽  
Vol 21 (1) ◽  
pp. 145-162
Author(s):  
MERVE KARA ◽  
YASIN YAZLIK

In this paper, we show that the system of difference equations can be solved in the closed form. Also, we determine the forbidden set of the initial values by using the obtained formulas. Finally, we obtain periodic solutions of aforementioned system.

Author(s):  
Renfrey B. Potts

AbstractDuffing's equation, in its simplest form, can be approximated by various non-linear difference equations. It is shown that a particular choice can be solved in closed form giving periodic solutions.


2016 ◽  
Vol 8 (1) ◽  
pp. 29-51 ◽  
Author(s):  
Stevo Stević

AbstractClosed form formulas for well-defined complex-valued solutions to a product-type system of difference equations of interest with six parameters are presented. The form of the solutions is described in detail in terms of the parameters and initial values.


Filomat ◽  
2020 ◽  
Vol 34 (4) ◽  
pp. 1167-1186
Author(s):  
Merve Kara ◽  
Yasin Yazlik

In this paper, we show that the following three-dimensional system of difference equations xn = zn-2xn-3/axn-3 + byn-1, yn = xn-2yn-3/cyn-3 + dzn-1, zn = yn-2zn-3/ezn-3+ fxn-1, n ? N0, where the parameters a, b, c, d, e, f and the initial values x-i, y-i, z-i, i ? {1, 2, 3}, are real numbers, can be solved, extending further some results in literature. Also, we determine the asymptotic behavior of solutions and the forbidden set of the initial values by using the obtained formulas.


2021 ◽  
Vol 71 (5) ◽  
pp. 1133-1148
Author(s):  
Merve Kara ◽  
Yasin Yazlik

Abstract In this paper, we show that the following three-dimensional system of difference equations x n + 1 = y n x n − 2 a x n − 2 + b z n − 1 , y n + 1 = z n y n − 2 c y n − 2 + d x n − 1 , z n + 1 = x n z n − 2 e z n − 2 + f y n − 1 , n ∈ N 0 , $$\begin{equation*} x_{n+1}=\frac{y_{n}x_{n-2}}{ax_{n-2}+bz_{n-1}}, \quad y_{n+1}=\frac{z_{n}y_{n-2}}{cy_{n-2}+dx_{n-1}}, \quad z_{n+1}=\frac{x_{n}z_{n-2}}{ez_{n-2}+fy_{n-1}}, \quad n\in \mathbb{N}_{0}, \end{equation*}$$ where the parameters a, b, c, d, e, f and the initial values x −i , y −i , z −i , i ∈ {0, 1, 2}, are complex numbers, can be solved, extending further some results in the literature. Also, we determine the forbidden set of the initial values by using the obtained formulas. Finally, an application concerning a three-dimensional system of difference equations are given.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Stevo Stević ◽  
Josef Diblík ◽  
Bratislav Iricanin ◽  
Zdenek Šmarda

We show that the system of three difference equationsxn+1=an(1)xn-2/(bn(1)ynzn-1xn-2+cn(1)),yn+1=an(2)yn-2/(bn(2)znxn-1yn-2+cn(2)), andzn+1=an(3)zn-2/(bn(3)xnyn-1zn-2+cn(3)),n∈N0, where all elements of the sequencesan(i),bn(i),cn(i),n∈N0,i∈{1,2,3}, and initial valuesx-j,y-j,z-j,j∈{0,1,2}, are real numbers, can be solved. Explicit formulae for solutions of the system are derived, and some consequences on asymptotic behavior of solutions for the case when coefficients are periodic with period three are deduced.


2020 ◽  
Vol 70 (3) ◽  
pp. 641-656
Author(s):  
Amira Khelifa ◽  
Yacine Halim ◽  
Abderrahmane Bouchair ◽  
Massaoud Berkal

AbstractIn this paper we give some theoretical explanations related to the representation for the general solution of the system of the higher-order rational difference equations$$\begin{array}{} \displaystyle x_{n+1} = \dfrac{1+2y_{n-k}}{3+y_{n-k}},\qquad y_{n+1} = \dfrac{1+2z_{n-k}}{3+z_{n-k}},\qquad z_{n+1} = \dfrac{1+2x_{n-k}}{3+x_{n-k}}, \end{array}$$where n, k∈ ℕ0, the initial values x−k, x−k+1, …, x0, y−k, y−k+1, …, y0, z−k, z−k+1, …, z1 and z0 are arbitrary real numbers do not equal −3. This system can be solved in a closed-form and we will see that the solutions are expressed using the famous Fibonacci and Lucas numbers.


1997 ◽  
Vol 27 (3) ◽  
pp. 257-265
Author(s):  
ZDZISLAW SZAFRANSKI ◽  
BLAZEJ SZMANDA

We obtain sufficient conditions for the oscillation of all solutions of some linear difference equations with variable coefficients.


Sign in / Sign up

Export Citation Format

Share Document