Effects of Urbanization on Stream Ecosystems

<em>Abstract.</em>—In this paper, we provide an introduction to water quality benefit estimation for noneconomists. Net water quality benefits are typically measured using the concept of consumer surplus, which is estimated using a number of economic valuation methodologies. These are divided into direct and indirect methods. Direct methods involve questioning survey respondents to determine their consumer surplus. Indirect methods use data from consumer market behavior to estimate economic values. When limited time or funding preclude costly data collection and the development of new consumer surplus estimates, the method of benefit transfer is used to tailor preexisting consumer surplus estimates to fit new policy situations. We provide an example of benefit transfer by estimating the value of water quality improvements for the Cape Fear River in North Carolina. Benefit transfer methods are used with three valuation approaches to estimate the benefits of water quality improvement.

2010 ◽  
Vol 39 (1) ◽  
pp. 114-131 ◽  
Author(s):  
Robert J. Johnston ◽  
Paul J. Thomassin

This paper presents a multinational meta-analysis estimated to identify systematic components of willingness to pay for surface water quality improvements, developed to support benefit transfer for Canadian policy development. Metadata are drawn from stated preference studies that estimate WTP for water quality changes affecting aquatic life habitats—a type of study with few Canadian examples. The goals of this paper are to assess the properties of a multinational (United States/Canada) meta-analysis compared to a single-country (U.S.) analog; illustrate the potential information that may be derived as well as the analytical challenges; and assess the performance of resulting meta-functions for benefit transfer.


2005 ◽  
Vol 5 (6) ◽  
pp. 95-104 ◽  
Author(s):  
D.N. Barton ◽  
T. Saloranta ◽  
T.H. Bakken ◽  
A. Lyche Solheim ◽  
J. Moe ◽  
...  

The evaluation of water bodies “at risk” of not achieving the Water Framework Directive's (WFD) goal of “good status” begs the question of how big a risk is acceptable before a programme of measures should be implemented. Documentation of expert judgement and statistical uncertainty in pollution budgets and water quality modelling, combined with Monte Carlo simulation and Bayesian belief networks, make it possible to give a probabilistic interpretation of “at risk”. Combined with information on abatement costs, a cost-effective ranking of measures based on expected costs and effect can be undertaken. Combined with economic valuation of water quality, the definition of “disproportionate cost” of abatement measures compared to benefits of achieving “good status” can also be given a probabilistic interpretation. Explicit modelling of uncertainty helps visualize where research and consulting efforts are most critical for reducing uncertainty. Based on data from the Morsa catchment in South-Eastern Norway, this paper discusses the relative merits of using Bayesian belief networks when integrating biophysical modelling results in the benefit-cost analysis of derogations and cost-effectiveness ranking of abatement measures under the WFD.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Antje Torge ◽  
Rainer Haeckel ◽  
Mustafa Özcürümez ◽  
Alexander Krebs ◽  
Ralf Junker

Abstract It has been observed that the estimation of reference intervals of leukocytes in whole venous blood leads to higher upper reference limits (uRLs) with indirect methods than has been reported in the literature determined by direct approaches. This phenomenon was reinvestigated with a newer, more advanced indirect method, and could be confirmed. Furthermore, a diurnal variation was observed with lower values during the morning and higher values in the late afternoon and at night. This observation can explain why indirect approaches using samples collected during 24 h lead to higher uRLs than direct methods applied on samples collected presumably in the morning.


AMBIO ◽  
2021 ◽  
Author(s):  
R. Eugene Turner

AbstractVarious air and water pollution issues in the US were confronted in the last 60 years using national policy legislation, notably the Clean Water Act and the Clean Air Act. I examine changes in the concentrations of bacteria, oxygen, lead, and sulphate at the terminus of the Mississippi River before and after these pollution abatement efforts. Microbial concentrations increased or were stable from 1909 to 1980 but decreased about 3 orders of magnitude after the 1970s, while the average oxygen content increased. A large decline in lead concentration occurred after the 1960s, along with a less dramatic decline in sulphate concentrations. The pH of the river dropped to a low of 5.8 in 1965 as sulfur dioxide emissions peaked and averaged 8.2 in 2019 after emissions declined. Decades of efforts at a national scale created water quality improvements and are an example for addressing new and existing water quality challenges.


Sign in / Sign up

Export Citation Format

Share Document