scholarly journals NEW DERIVED CORRELATIONS FOR LIBYAN CRUDE OIL TO ESTIMATE BUBBLE-POINT PRESSURE

Author(s):  
Mustafa Sharrad ◽  
Hamid Hakim Abd-Alrahman

The key factor of all petroleum engineering calculation is the knowledge of the PVT (Pressure, Volume, Temperature) parameters, such as determination of oil and gas flowing properties, predicting production performance in the future, production facilities designing and enhanced oil recovery planning methods. Those PVT properties are ideally determined experimentally in the laboratory. However, some of these experimental data is not always available; consequently, empirical correlations are used to estimate them. Many researchers have been focusing on models for predicting reservoir fluid properties from the available experimental PVT data, such as reservoir pressure, temperature, crude oil API gravity, gas oil ratio, formation volume factor, and gas gravity. The present study compares between some of the available empirical PVT correlations for estimating the bubble point pressure of some Libyan crude oils based on 35 data point samples from different Libyan oil fields. In the second part of this study, a new correlation has been derived to predict the bubble point pressure using Eviews software and compares the output results of this new correlation with some derived correlations found in the literature using statistical analysis such as the Average Absolute Error (AARE). The results showed an AARE as low as 8.7%, for bubble point pressure estimated by this new derived correlation. These results are valid to compare to other driven empirical correlations that have been evaluated. 

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2667 ◽  
Author(s):  
Wenxiang Chen ◽  
Zubo Zhang ◽  
Qingjie Liu ◽  
Xu Chen ◽  
Prince Opoku Appau ◽  
...  

Oil production by natural energy of the reservoir is usually the first choice for oil reservoir development. Conversely, to effectively develop tight oil reservoir is challenging due to its ultra-low formation permeability. A novel platform for experimental investigation of oil recovery from tight sandstone oil reservoirs by pressure depletion has been proposed in this paper. A series of experiments were conducted to evaluate the effects of pressure depletion degree, pressure depletion rate, reservoir temperature, overburden pressure, formation pressure coefficient and crude oil properties on oil recovery by reservoir pressure depletion. In addition, the characteristics of pressure propagation during the reservoir depletion process were monitored and studied. The experimental results showed that oil recovery factor positively correlated with pressure depletion degree when reservoir pressure was above the bubble point pressure. Moreover, equal pressure depletion degree led to the same oil recovery factor regardless of different pressure depletion rate. However, it was noticed that faster pressure drop resulted in a higher oil recovery rate. For oil reservoir without dissolved gas (dead oil), oil recovery was 2–3% due to the limited reservoir natural energy. In contrast, depletion from live oil reservoir resulted in an increased recovery rate ranging from 11% to 18% due to the presence of dissolved gas. This is attributed to the fact that when reservoir pressure drops below the bubble point pressure, the dissolved gas expands and pushes the oil out of the rock pore spaces which significantly improves the oil recovery. From the pressure propagation curve, the reason for improved oil recovery is that when the reservoir pressure is lower than the bubble point pressure, the dissolved gas constantly separates and provides additional pressure gradient to displace oil. The present study will help engineers to have a better understanding of the drive mechanisms and influencing factors that affect development of tight oil reservoirs, especially for predicting oil recovery by reservoir pressure depletion.


2017 ◽  
Author(s):  
Salaheldin Elkatatny ◽  
Rami Aloosh ◽  
Zeeshan Tariq ◽  
Mohamed Mahmoud ◽  
Abdulazeez Abdulraheem

2013 ◽  
Vol 27 (3) ◽  
pp. 1212-1222 ◽  
Author(s):  
Marco A. Aquino-Olivos ◽  
Jean-Pierre E. Grolier ◽  
Stanislaw L. Randzio ◽  
Adriana J. Aguirre-Gutiérrez ◽  
Fernando García-Sánchez

2021 ◽  
Author(s):  
Zhaopeng Yang ◽  
Xingmin Li ◽  
Xinxia Xu ◽  
Yang Shen ◽  
Xiaoxing Shi

Abstract The block M as a foamy extra-heavy oil field in the Carabobo Area, the eastern Orinoco Belt, has been exploited by foamy oil cold production utilizing horizontal wells. The early producing area of block M has been put into production more than 10 years. And the development features of cold production in foamy extra-heavy oil reservoirs are different from the conventional oil field. It is necessary to investigate the development features of this kind reservoir and analyze its influence factors. Combining the production data with the reservoir geological characteristics of the research area, the cold production features of foamy extra-heavy oil using horizontal wells are analyzed. Then numerical simulations were adopted to study the influence factors of cold production performance. In the early stage of cold production, the oil production rate is high and the producing GOR is low. With the process of cold production, the reservoir pressure decreases gradually, the producing GOR increases gradually, and the oil production rate decreases gradually. When the bottom hole flowing pressure drops to below the bubble point pressure, the flow of extra-heavy oil in the reservoir can be divided into two zones: far well zone and near well area. In the far well zone, the pressure is higher than the bubble point pressure. The flow of oil is a single-phase flow, and the displacement mode is elastic driving. In the near well area, the pressure is lower than the bubble point pressure, and the oil flow is foamy oil flow, and the displacement mode is the dissolving gas drive driven by foamy oil. There exists many factors that influence the cold production performance of foamy extra-heavy oil, including reservoir depth, reservoir thickness, reservoir physical property and heterogeneity. The oil recovery factor per unit pressure drop can evaluate the cold production performance of foamy extra-heavy oil reservoirs. The effectiveness of cold production is closely related to reservoir parameters. Larger reservoir thickness, deeper reservoir depth and greater reservoir permeability will enhance the performance of cold production. Closer, larger and more interlayers above the horizontal well will hinder the performance of cold production. This research provides certain guidance and reference for further development adjustment and new project evaluation for foamy extra-heavy oil reservoirs in the Eastern Orinoco Belt.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Sina Rashidi ◽  
Mohammad Khajehesfandeari

Abstract Bubble point pressure (BPP) not only is a basic pressure–volume–temperature (PVT) parameter for calculation nearly all of the crude oil characteristics, but also determines phase-type of oil reservoirs, gas-to-oil ratio, oil formation volume factor, inflow performance relationship, and so on. Since the measurement of BPP of crude oil is an expensive and time-consuming experiment, this study develops a committee machine-ensemble (CME) paradigm for accurate estimation of this parameter from solution gas-oil ratio, reservoir temperature, gas specific gravity, and stock-tank oil gravity. Our CME approach is designed using a linear combination of predictions of four different expert systems. Unknown coefficients of this combination are adjusted through minimizing deviation between actual BPPs and their associated predictions using differential evolution and genetic algorithm. Our proposed CME paradigm is developed using 380 PVT datasets for crude oils from different geological regions. This novel intelligent paradigm estimates available experimental databank with excellent accuracy i.e., absolute average relative deviation (AARD) of 6.06% and regression coefficient (R2) of 0.98777. Accurate prediction of BPP using our CME paradigm decreases the risk of producing from a two-phase region of oil reservoirs.


Author(s):  
Amir Tabzar ◽  
Mohammad Fathinasab ◽  
Afshin Salehi ◽  
Babak Bahrami ◽  
Amir H. Mohammadi

Asphaltene precipitation in reservoirs during production and Enhanced Oil Recovery (EOR) can cause serious problems that lead to reduction of reservoir fluid production. In order to study asphaltene tendency to precipitate and change in flow rate as a function of distance from wellbore, an equation of state (Peng-Robinson) based model namely Nghiem et al.’s model has been employed in this study. The heaviest components of crude oil are separated into two parts: The first portion is considered as non-precipitating component (C31A+) and the second one is considered as precipitating component (C31B+) and the precipitated asphaltene is considered as pure solid. For determination of the acentric factor and critical properties, Lee-Kesler and Twu correlations are employed, respectively. In this study, a multiphase flow (oil, gas and asphaltene) model for an asphaltenic crude oil for which asphaltene is considered as solid particles (precipitated, flocculated and deposited particles), has been developed. Furthermore, effect of asphaltene precipitation on porosity and permeability reduction has been studied. Results of this study indicate that asphaltene tendency to precipitate increases and permeability of porous medium decreases by increasing oil flow rate in under-saturated oil reservoirs and dropping reservoir pressure under bubble point pressure. On the other hand, asphaltene tendency to precipitate decreases with pressure reduction to a level lower than bubble point pressure where asphaltene starts to dissolve back into oil phase. Moreover, it is observed that precipitation zone around the wellbore develops with time as pressure declines to bubble point pressure (production rate increases up). Also, there is an equilibrium area near wellbore region at which reservoir fluid properties such as UAOP (Upper Asphaltene Onset Pressure) and LAOP (Lower Asphaltene Onset Pressure) are constant and independent of the distance from wellbore.


Sign in / Sign up

Export Citation Format

Share Document