scholarly journals Effective Method of Age Dependent Face Recognition

Author(s):  
Hlaing Htake Khaung Tin ◽  
Myint Myint Sein

This Automatic age dependent face recognition system is developed. This approach is based on the Principle Component Analysis (PCA). Eigen face approach is used for both age prediction and face recognition. Face database is created by aging groups individually. The age prediction is carried out by projecting a new face image into this face space and then comparing its position in the face space with those of known faces. After that we find the best match in the related face database, the Eigen face representation of an input image is first obtained. Then it is compared with the Eigen face representation of face in the database. The closest one is the match. It will be reduced the time complexity using this approach. The proposed method preserves the identity of the subject while enforcing a realistic recognition effects on adult facial images between 15 to 70 years old. The accuracy of the system is analyzed by the variation on the range of the age groups. The efficiency of the system can be confirmed through the experimental results.

2019 ◽  
Vol 8 (3) ◽  
pp. 33
Author(s):  
Herman Kh. Omar ◽  
Nada E. Tawfiq

In the recent time bioinformatics take wide field in image processing. Face recognition which is basically the task of recognizing a person based on its facial image. It has become very popular in the last two decades, mainly because of the new methods developed and the high quality of the current visual instruments. There are different types of face recognition algorithms, and each method has a different approach to extract the image features and perform the matching with the input image. In this paper the Local Binary Patterns (LBP) was used, which is a particular case of the Texture Spectrum model, and powerful feature for texture classification. The face recognition system consists of recognizing the faces acquisition from a given data base via two phases. The most useful and unique features of the face image are extracted in the feature extraction phase. In the classification the face image is compared with the images from the database. The proposed algorithm for face recognition in this paper adopt the LBP features encode local texture information with default values. Apply histogram equalization and Resize the image into 80x60, divide it to five blocks, then Save every LBP feature as a vector table. Matlab R2019a was used to build the face recognition system. The Results which obtained are accurate and they are 98.8% overall (500 face image).


Author(s):  
LAIYUN QING ◽  
SHIGUANG SHAN ◽  
WEN GAO ◽  
BO DU

The performances of the current face recognition systems suffer heavily from the variations in lighting. To deal with this problem, this paper presents an illumination normalization approach by relighting face images to a canonical illumination based on the harmonic images model. Benefiting from the observations that human faces share similar shape, and the albedos of the face surfaces are quasi-constant, we first estimate the nine low-frequency components of the illumination from the input facial image. The facial image is then normalized to the canonical illumination by re-rendering it using the illumination ratio image technique. For the purpose of face recognition, two kinds of canonical illuminations, the uniform illumination and a frontal flash with the ambient lights, are considered, among which the former encodes merely the texture information, while the latter encodes both the texture and shading information. Our experiments on the CMU-PIE face database and the Yale B face database have shown that the proposed relighting normalization can significantly improve the performance of a face recognition system when the probes are collected under varying lighting conditions.


2019 ◽  
Vol 8 (4) ◽  
pp. 3111-3116

Face recognition, the fastest growing biometric technology of computer vision, made a breakthrough in the field of security, healthcare, access control and marketing etc. This technology helps in automatically discern and identify the faces for authentication by comparing available digital image of faces. Various algorithms have been developed for enhancing the performance of face recognition system. The face authentication system entails three major steps, face detection, feature extraction and face recognition. This paper provides some of the major milestones of face representation for recognition like holistic learning approach, feature based approach, hybrid approach and deep learning approach. The various techniques under these categories are reviewed. Finally, implemented face recognition using convolution neural network (CNN). In this method, the image is captured through webcam for the dataset preparation. The detection is carried out by CNN cascade, followed by face landmark and face embedding by FaceNet CNN. Recognition of face is performed after training the network. Implemented faces recognition successfully and accurately for smaller dataset.


Author(s):  
N.Ramya ◽  
D.Manasa ◽  
N.Ramya Sri ◽  
Sk.Naveed

Face is the crucial part of the human body that uniquely identifies a person. Using the face characteristics as biometric, the face recognition system can be implemented. The most demanding task in any organization is attendance marking. In traditional attendance system, the students are called out by the teachers and their presence or absence is marked accordingly. However, these traditional techniques are time consuming and tedious. In this project, the Open CV based face recognition approach has been proposed. This model integrates a camera that captures an input image, an algorithm for detecting face from an input image, encoding and identifying the face, marking the attendance in a spreadsheet and converting it into PDF file. The training database is created by training the system with the faces of the authorized students. The cropped images are then stored as a database with respective labels. The features are extracted using LBPH algorithm.


2022 ◽  
Author(s):  
Hang Du ◽  
Hailin Shi ◽  
Dan Zeng ◽  
Xiao-Ping Zhang ◽  
Tao Mei

Face recognition is one of the most popular and long-standing topics in computer vision. With the recent development of deep learning techniques and large-scale datasets, deep face recognition has made remarkable progress and been widely used in many real-world applications. Given a natural image or video frame as input, an end-to-end deep face recognition system outputs the face feature for recognition. To achieve this, a typical end-to-end system is built with three key elements: face detection, face alignment, and face representation. The face detection locates faces in the image or frame. Then, the face alignment is proceeded to calibrate the faces to the canonical view and crop them with a normalized pixel size. Finally, in the stage of face representation, the discriminative features are extracted from the aligned face for recognition. Nowadays, all of the three elements are fulfilled by the technique of deep convolutional neural network. In this survey article, we present a comprehensive review about the recent advance of each element of the end-to-end deep face recognition, since the thriving deep learning techniques have greatly improved the capability of them. To start with, we present an overview of the end-to-end deep face recognition. Then, we review the advance of each element, respectively, covering many aspects such as the to-date algorithm designs, evaluation metrics, datasets, performance comparison, existing challenges, and promising directions for future research. Also, we provide a detailed discussion about the effect of each element on its subsequent elements and the holistic system. Through this survey, we wish to bring contributions in two aspects: first, readers can conveniently identify the methods which are quite strong-baseline style in the subcategory for further exploration; second, one can also employ suitable methods for establishing a state-of-the-art end-to-end face recognition system from scratch.


Face recognition plays a vital role in security purpose. In recent years, the researchers have focused on the pose illumination, face recognition, etc,. The traditional methods of face recognition focus on Open CV’s fisher faces which results in analyzing the face expressions and attributes. Deep learning method used in this proposed system is Convolutional Neural Network (CNN). Proposed work includes the following modules: [1] Face Detection [2] Gender Recognition [3] Age Prediction. Thus the results obtained from this work prove that real time age and gender detection using CNN provides better accuracy results compared to other existing approaches.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yunjun Nam ◽  
Takayuki Sato ◽  
Go Uchida ◽  
Ekaterina Malakhova ◽  
Shimon Ullman ◽  
...  

AbstractHumans recognize individual faces regardless of variation in the facial view. The view-tuned face neurons in the inferior temporal (IT) cortex are regarded as the neural substrate for view-invariant face recognition. This study approximated visual features encoded by these neurons as combinations of local orientations and colors, originated from natural image fragments. The resultant features reproduced the preference of these neurons to particular facial views. We also found that faces of one identity were separable from the faces of other identities in a space where each axis represented one of these features. These results suggested that view-invariant face representation was established by combining view sensitive visual features. The face representation with these features suggested that, with respect to view-invariant face representation, the seemingly complex and deeply layered ventral visual pathway can be approximated via a shallow network, comprised of layers of low-level processing for local orientations and colors (V1/V2-level) and the layers which detect particular sets of low-level elements derived from natural image fragments (IT-level).


2012 ◽  
Vol 39 (1) ◽  
pp. 9-16
Author(s):  
Roz Walker ◽  
Mary Stokes ◽  
Michal Socker ◽  
Margaret Collins

2014 ◽  
Vol 971-973 ◽  
pp. 1710-1713
Author(s):  
Wen Huan Wu ◽  
Ying Jun Zhao ◽  
Yong Fei Che

Face detection is the key point in automatic face recognition system. This paper introduces the face detection algorithm with a cascade of Adaboost classifiers and how to configure OpenCV in MCVS. Using OpenCV realized the face detection. And a detailed analysis of the face detection results is presented. Through experiment, we found that the method used in this article has a high accuracy rate and better real-time.


Now a days one of the critical factors that affects the recognition performance of any face recognition system is partial occlusion. The paper addresses face recognition in the presence of sunglasses and scarf occlusion. The face recognition approach that we proposed, detects the face region that is not occluded and then uses this region to obtain the face recognition. To segment the occluded and non-occluded parts, adaptive Fuzzy C-Means Clustering is used and for recognition Minimum Cost Sub-Block Matching Distance(MCSBMD) are used. The input face image is divided in to number of sub blocks and each block is checked if occlusion present or not and only from non-occluded blocks MWLBP features are extracted and are used for classification. Experiment results shows our method is giving promising results when compared to the other conventional techniques.


Sign in / Sign up

Export Citation Format

Share Document