scholarly journals Face Recognition Based on Histogram Equalization and LBP Algorithm

2019 ◽  
Vol 8 (3) ◽  
pp. 33
Author(s):  
Herman Kh. Omar ◽  
Nada E. Tawfiq

In the recent time bioinformatics take wide field in image processing. Face recognition which is basically the task of recognizing a person based on its facial image. It has become very popular in the last two decades, mainly because of the new methods developed and the high quality of the current visual instruments. There are different types of face recognition algorithms, and each method has a different approach to extract the image features and perform the matching with the input image. In this paper the Local Binary Patterns (LBP) was used, which is a particular case of the Texture Spectrum model, and powerful feature for texture classification. The face recognition system consists of recognizing the faces acquisition from a given data base via two phases. The most useful and unique features of the face image are extracted in the feature extraction phase. In the classification the face image is compared with the images from the database. The proposed algorithm for face recognition in this paper adopt the LBP features encode local texture information with default values. Apply histogram equalization and Resize the image into 80x60, divide it to five blocks, then Save every LBP feature as a vector table. Matlab R2019a was used to build the face recognition system. The Results which obtained are accurate and they are 98.8% overall (500 face image).

Author(s):  
N.Ramya ◽  
D.Manasa ◽  
N.Ramya Sri ◽  
Sk.Naveed

Face is the crucial part of the human body that uniquely identifies a person. Using the face characteristics as biometric, the face recognition system can be implemented. The most demanding task in any organization is attendance marking. In traditional attendance system, the students are called out by the teachers and their presence or absence is marked accordingly. However, these traditional techniques are time consuming and tedious. In this project, the Open CV based face recognition approach has been proposed. This model integrates a camera that captures an input image, an algorithm for detecting face from an input image, encoding and identifying the face, marking the attendance in a spreadsheet and converting it into PDF file. The training database is created by training the system with the faces of the authorized students. The cropped images are then stored as a database with respective labels. The features are extracted using LBPH algorithm.


2014 ◽  
Vol 971-973 ◽  
pp. 1710-1713
Author(s):  
Wen Huan Wu ◽  
Ying Jun Zhao ◽  
Yong Fei Che

Face detection is the key point in automatic face recognition system. This paper introduces the face detection algorithm with a cascade of Adaboost classifiers and how to configure OpenCV in MCVS. Using OpenCV realized the face detection. And a detailed analysis of the face detection results is presented. Through experiment, we found that the method used in this article has a high accuracy rate and better real-time.


Now a days one of the critical factors that affects the recognition performance of any face recognition system is partial occlusion. The paper addresses face recognition in the presence of sunglasses and scarf occlusion. The face recognition approach that we proposed, detects the face region that is not occluded and then uses this region to obtain the face recognition. To segment the occluded and non-occluded parts, adaptive Fuzzy C-Means Clustering is used and for recognition Minimum Cost Sub-Block Matching Distance(MCSBMD) are used. The input face image is divided in to number of sub blocks and each block is checked if occlusion present or not and only from non-occluded blocks MWLBP features are extracted and are used for classification. Experiment results shows our method is giving promising results when compared to the other conventional techniques.


Author(s):  
Dr.C K Gomathy ◽  
T. suneel ◽  
Y.Jeeevan Kumar Reddy

The Face recognition and image or video recognition are popular research topics in biometric technology. Real-time face recognition is an exciting field and a rapidly evolving issue. Key component analysis (PCA) may be a statistical technique collectively called correlational analysis . The goal of PCA is to scale back the massive amount of knowledge storage to the dimensions of the functional space required to render the face recognition system. The wide one-dimensional pixel vector generated from the two-dimensional image of the face and therefore the basic elements of the spatial function are designed for face recognition using PCA. this is often the projection of your own space. Sufficient space is decided by the brand. specialise in the eigenvectors of the covariance matrix of the fingerprint image collection. i'm building a camera-based real-time face recognition system and installing an algorithm. Use OpenCV, Haar Cascade, Eigen face, Fisher Face, LBPH and Python for program development.


2012 ◽  
Vol 241-244 ◽  
pp. 1705-1709
Author(s):  
Ching Tang Hsieh ◽  
Chia Shing Hu

In this paper, a robust and efficient face recognition system based on luminance distribution by using maximum likelihood estimation is proposed. The distribution of luminance components of the face region is acquired and applied to maximum likelihood test for face matching. The experimental results showed that the proposed method has a high recognition rate and requires less computation time.


2004 ◽  
Vol 13 (05) ◽  
pp. 1133-1146
Author(s):  
H. OTHMAN ◽  
T. ABOULNASR

In this paper, the effect of mixture tying on a second-order 2D Hidden Markov Model (HMM) is studied as applied to the face recognition problem. While tying HMM parameters is a well-known solution in the case of insufficient training data that leads to nonrobust estimation, it is used here to improve the overall performance in the small model case where the resolution in the observation space is the main problem. The fully-tied-mixture 2D HMM-based face recognition system is applied to the facial database of AT&T and the facial database of Georgia Institute of Technology. The performance of the proposed 2D HMM tied-mixture system is studied and the expected improvement is confirmed.


Author(s):  
Noradila Nordin ◽  
Nurul Husna Mohd Fauzi

Attendance marking in a classroom is one of the methods used to track the student’s presence in the lecture. The conventional method that is being enforced has shown to be vulnerable, inaccurate and time-consuming especially in a large classroom. It is difficult to identify absentees and proxy attendees based on the conventional attendance marking method. In order to overcome the challenges faced in the conventional method, a web-based mobile attendance system with facial recognition feature is proposed. It incorporated the existing mobile devices with a camera and the face recognition system to allow the attendance system to be used in classrooms automatically and efficiently with minor implementation requirements. The system prototype received positive responses from the volunteers who tested the system to replace the conventional attendance marking.


2012 ◽  
Vol 224 ◽  
pp. 485-488
Author(s):  
Fei Li ◽  
Yuan Yuan Wang

Abstract: In order to solve the easily copied problem of images in face recognition software, an algorithm combining the image feature with digital watermark is presented in this paper. As watermark information, image feature of the adjacent blocks are embedded to the face image. And primitive face images are not needed when recovering the watermark. So face image integrity can be well confirmed, and the algorithm can detect whether the face image is the original one and identify whether the face image is attacked by malicious aim-such as tampering, replacing or illegally adding. Experimental results show that the algorithm with good invisibility and excellent robustness has no interference on face recognition rate, and it can position the specific tampered location of human face image.


Sign in / Sign up

Export Citation Format

Share Document